第一范文网 - 专业文章范例文档资料分享平台

专升本高数公式大全

来源:用户分享 时间:2025/11/30 0:39:45 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

高等数学公式

(tgx)??sec2x(ctgx)???csc2x(secx)??secx?tgx(cscx)???cscx?ctgx(ax)??axlna(logax)??1xlna(arcsinx)??11?x21(arccosx)???1?x21(arctgx)??1?x21(arcctgx)???1?x2?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx2?cos2x??secxdx?tgx?Cdx2?sin2x??cscxdx??ctgx?C?secx?tgxdx?secx?C?cscx?ctgxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?00n?1In?2n???导数公式:

x2a22x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?adx?x?a?lnx?x2?a2?C22x2a2x222a?xdx?a?x?arcsin?C22a22基本积分表:

三角函数的有理式积分:

一些初等函数:两个重要极限:

三角函数公式:·诱导公式:

函数 sin cos tg ctg 角A -α -sinα cosα -tgα -ctgα 90°-α cosα sinα ctgα tgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα -cosα -tgα -ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα

270°+α -cosα sinα -ctgα -tgα 360°-α -sinα cosα -tgα -ctgα 360°+α sinα cosα tgα ctgα sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?tg??tg?tg(???)?1?tg??tg?ctg??ctg??1ctg(???)?ctg??ctg?sin??sin??2sin???22??????sin??sin??2cossin22??????cos??cos??2coscos22??????cos??cos??2sinsin22cos???·和差角公式:·和差化积公式:

·倍角公式:

·半角公式:

abc???2R·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC·正弦定理:

·反三角函数性质:arcsinx???arccosx   arctgx???arcctgx

2高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:

曲率:

定积分的近似计算:

定积分应用相关公式:

空间解析几何和向量代数:

多元函数微分法及应用

微分法在几何上的应用:

2

?x??(t)x?xy?y0z?z0?空间曲线?y??(t)在点M(x0,y0,z0)处的切线方程:0?????(t)?(t)??(t0)00?z??(t)?在点M处的法平面方程:??(t0)(x?x0)???(t0)(y?y0)???(t0)(z?z0)?0??FyFzFzFxFx?F(x,y,z)?0若空间曲线方程为:,则切向量T?{,,?GGGxGGG(x,y,z)?0?yzzx?曲面F(x,y,z)?0上一点M(x0,y0,z0),则:?1、过此点的法向量:n?{Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)}x?x0y?y0z?z03、过此点的法线方程:??Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)FyGy}2、过此点的切平面方程:Fx(x0,y0,z0)(x?x0)?Fy(x0,y0,z0)(y?y0)?Fz(x0,y0,z0)(z?z0)?0方向导数与梯度:

多元函数的极值及其求法:

重积分及其应用:

柱面坐标和球面坐标:

曲线积分:

曲面积分:

高斯公式:

搜索更多关于: 专升本高数公式大全 的文档
专升本高数公式大全.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0waqq0prrj6b8ve00zsa83uyx967u500v9o_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top