5
?十、计算?Lyds,其中L是顶点为A?1,0?,B?0,1?和O?0,0?的三角形边界. (参考
P79例2)
解:AB,OB,OA的方程分别为:y?1?x, 0?x?1,x?0, 0?y?1,y?0, 0?x?1,2 则:????(x?y)ds?x?1?x1?(?1)dx??AB01
??102dx?21112(x?y)ds?(x?0)1?0dx?xdx?,?OA?0?021112(x?y)ds?(0?y)0?1dy?ydy?,?OB?0?02故得:?(x?y)ds??(x?y)ds??(x?y)ds??(x?y)ds?2?1LOAABOB十一、求微分方程sinxcosydx?cosxsinydy?0满足初始条件yx?0??4的特解.P167
解:将方程分离变量得:?将条件yx?0?带入,sinxsinydx?dy,4cosxcosy2得:C?,sinxsinydx?dy, 两边积分: 2?cosx?cosy故所求方程的特解为:得:?lncosx??lncosy?lnC,22cosy?coxs,或y?arccos(coxs)简化得:cosy?Ccosx22
相关推荐: