第十二章 函数项级数
12.1 函数序列的一致收敛概念
1.讨论下列函数序列在所示区域的一致收敛性: (1)fn(x)?x2?1n2, x?(??,??); (2)fn(x)?sinxn; ⅰ)x?(?l,l), ⅱ)x?(??,??);
(3)f?nxn(x)1?nx,x?(0,1); (4)f1n(x)?1?nx,
ⅰ)x?[a,??),a?0, ⅱ)x?(0,??);
5)f?n2x2(n(x)1?n3x3, ⅰ)x?[a,??),a?0, ⅱ)x?(0,??);
(6)fnxn(x)?x?n?1, x?[0,1];
(7)fxnn(x)?1?xn, ⅰ)x?[0,b],b?0, ⅱ)x?[0,1], ⅲ)x?[a,??),(8)fn2nn(x)?x?x,x?[0,1]; (9)fnn?1n(x)?x?x,x?[0,1];
(10)fxn(x)?nlnxn,x?(0,1); (11)f1?nxn(x)?nln?1?e?,x?(??,??);
(12)f?(x?n)2n(x)?e,
ⅰ)x?[?l,l], ⅱ)x?(??,??).
解 (1)?x?(??,??),
a?0;
limfn(x)?limn??n??x2?1?n2x2?x?f(x).
???0,要使
fn(x)?f(x)?x2?1?x?2n1?21??n2?x??x2??n???11n???, 2nn只须n?
,取N????1,则当n?N时,对一切x?(??,??),有fn(x)?f(x)??,
????1?1?因此fn(x)?x2?1在x?(??,??)一致收敛于f(x)?x. 2nn??n??(2)?x?(??,??),limfn(x)?limsinⅰ)???0,由于
x?0?f(x), nfn(x)?f(x)?sinxlx??, nnn知只要
lx?l???,故?N????1,当n?N时,有fn(x)?f(x)??,因此fn(x)?sin nn???在(?l,l)一致收敛于f(x)?0.
1n?0,?N,?n?N?1?1,xn???(??,??),但 22?1fn(xn)?f(xn)?sin?1???0,
22x所以fn(x)?sin在(??,??) 不一致收敛到f(x)?0.
nⅱ)??0?(3)?x?(0,1),
fn(x)?x1?xn?1?f(x)(n??).
??0?11?0,?N,?n?N?1?N,xn??(0,1),但 2nfn(xn)?f(xn)?所以fn(x)?nxn11?1??1???0, 1?nx1?12nx在(0,1)不一致收敛到f?x??1. 1?nx (4) ?x?(0,??),fn(x)?ⅰ)???0,要使
1?0?f(x)(n??).
1?nx111???? ,
1?nx1?nanafn(x)?f(x)?只须n?1?1?,取N????1,则当n?N时,有fn(x)?f(x)??,对x?[a,??)a?a???一致地成立,故fn(x)?1在[a,??)(a?0)一致收敛于f(x)?0. 1?nx11ⅱ)??0??0,?N,?n?N?1?N,xn??(0,??),但
2nfn(xn)?f(xn)?11?n1n?1??0, 2所以fn(x)?1 在(0,??)不一致收敛于f(x)?0. 1?nxx2nn2x2??0?f(x)(n??). (5) ?x?(0,??),fn(x)?11?n3x3?x33nⅰ)???0,要使
n2x211fn(x)?f(x)??33????,
nxnanx只须n?1?1?,取N????1,则当n?N时,有fn(x)?f(x)??,对x?[a,??) a??a??n2x2一致地成立,故fn(x)? 在[a,??)(a?0)一致收敛于f(x)?0.
1?n3x3ⅱ)??0?11?0,?N,?n?N?1?N,xn??(0,??),而 2n1n221nfn(xn)?f(xn)????0, 121?n33nn2x2即fn(x)? 在(0,??)不一致收敛于f(x)?0. 331?nx
相关推荐: