期末复习(六) 数据的收集、整理与描述
考点一 调查方式的选用
【例1】下列调查方式中适合的是( )
A.要了解一批节能灯的使用寿命,采用全面调查方式 B.调查你所在班级同学的身高,采用抽样调查方式
C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式 D.调查全市中学生每天的就寝时间,采用全面调查方式
【分析】统计的调查方式有全面调查与抽样调查两种方式.对于两种调查方式的选择主要取决于调查对象的数量和性质,因为调查具有时间限制,有的调查还具有破坏性. 【解答】C
【方法归纳】全面调查适合的条件:(1)总体的数目较少,(2)研究的问题要求情况真实、准确性较高,(3)调查工作方面,没有破坏性;抽样调查适合的条件:(1)受客观条件限制,无法对所有个体进行调查,(2)调查具有破坏性.
1.以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检
C.学校招聘教师,对应聘人员面试 D.了解全市中小学生每天的零花钱 考点二 收集数据的相关概念 【例2】为了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是( ) A.6 000名学生是总体 B.每个学生是个体
C.300名学生是抽取的一个样本 D.每个学生的数学成绩是个体
【分析】我们可以根据总体、个体、样本、样本容量的概念结合具体问题解决,本题的考察对象是6 000名学生的数学成绩,而不是6 000名学生,所以选项A是错误的,同理,选项B,C也是错误的,每个学生的数学成绩是个体,所以选项D是正确的. 【解答】D
【方法归纳】解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.
2. 2015年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( ) A.300名考生的数学成绩 B.300
C.3.2万名考生的数学成绩 D.300名考生
考点三 统计图的选择与制作
【例3】绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:
穗长 频数 4.5≤x<5 5≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<7 7≤x<7.5 4 8 12 13 10 3 (1)在下图中画出频数分布直方图;
(2)请你对这块试验田里的水稻穗长进行分析,并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.
【分析】题目已给出频数分布表,可根据表中所给数据画出频数分布直方图,再根据频数分布直方图回答(2)中的问题. 【解答】(1)如图所示:
(2)由(1)可知谷穗长度大部分落在5 cm至7 cm之间,其他范围较少.长度在6≤x<6.5范围内的谷穗个数最多,有13个.这块试验田里穗长在5.5≤x<7范围内的谷穗所占百分比为(12+13+10)÷50=70%.
【方法归纳】给出频数分布表求作频数分布直方图时,按照画频数分布直方图的步骤完成即可.
3.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:
(1)从统计表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;
(2)估计该校七年级体育测试成绩不及格的人数.
考点四 统计图表中信息的获取
【例4】在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.
请你结合图中信息,解答下列问题: (1)本次共调查了__________名学生;
(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;
(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.
【分析】(1)结合条形统计图和扇形统计图可以看出最喜爱丙类图书的有40人,占被调查人数的20%,因此总人数=40÷20%=200(人);
(2)根据总人数为200人,可以求最喜爱丁类图书的人数=200-80-65-40=15(人),最喜爱甲类图书的人数占本次被调查人数的百分比=
80×100%=40%; 200 (3)先求出最喜爱丙类图书的总人数,然后用x表示男生人数,1.5x表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.
【解答】(1)40÷20%=200(人). (2)200-80-65-40=15(人),
80×100%=40%. 200 (3)设最喜爱丙类图书的男生人数为x人,则女生人数为1.5x人.根据题意,得
x+1.5x=1 500×20%.解得x=120. 当x=120时,1.5x=180.
∴最喜爱丙类图书的女生人数为180人,男生人数为120人. 【方法归纳】解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.
4.某校为了解“阳光体育”活动的开展情况,从全校2 000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有人,并补全条形统计图;
(2)在扇形统计图中,m=__________,n=__________; (3)全校学生中喜欢篮球的人数大约有多少?
复习测试
一、选择题(每小题3分,共30分)
1.下列调查中,适宜采用全面调查(普查)方式的是( )
A.对全国中学生心理健康现状的调查 B.对市场上的冰淇淋质量的调查 C.对我市市民实施低碳生活情况的调查 D.对我国首架大型民用直升机各零部件的检查
2.下列调查方式合适的是( )
A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生 B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查 C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式 D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式
3.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,
相关推荐: