第一范文网 - 专业文章范例文档资料分享平台

算法设计-01背包问题的分析

来源:用户分享 时间:2025/7/20 17:38:49 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

算法设计与分析

------0/1背包问题实例研究

班级:学号:姓名:王

090402 20091236 龙

一、问题描述

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

二、基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

三、优化空间复杂度

我们可以很容易的得出,以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。先考虑上面说的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题(完全背包问题)最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

1 / 7

事实上,使用一维数组解01背包的程序我们会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,在平时的ACM训练中程序代码我们会直接调用,因此这里不再加以说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight) for v=V..cost

f[v]=max{f[v],f[v-cost]+weight}

值得注意的是,这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。因此,有了这个过程以后,01背包问题的伪代码就可以这样写: for i=1..N

ZeroOnePack(c[i],w[i]);

四、初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧是我们从ACM的做题中自己摸索出来的,同样这个小技巧完全可以推广到其它类型的背包问题,在这里我也就不再对进行状态转移之前的初始化进行讲解。

2 / 7

五、一个常数优化

前面的伪代码中有 for v=V..1,我们可以将这个循环的下限进行改进。由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的

for i=1..N for v=V..0

可以改成

for i=1..n

bound=max{V-sum{w[i..n]},c[i]}

for v=V..bound

这对于V比较大时是相当有用的。

六、0/1背包实例

为了进一步的理解0/1背包问题,我们可以做一下具体的实践。以USACO 2007 December Silver中Charm Bracelet问题做具体的说明。

1、 问题的描述:

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

3 / 7

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input 4 6 1 4 2 6 3 12 2 7

Sample Output 23

2、题目大意

有n个手镯, 每个手镯有一定的重量和让Bessie高兴的程度, 现在Bessie

最多带重量不超过m的手镯, 求该怎样选取手镯使Bessie最高兴.

3、问题分析

标准的01背包,动态转移方程如下。其中dp[i,j]表示的是前i个物品装入容量为j的背包里所能产生的最大价值,w[i]是第i个物品的重量,d[i]是第i个物品的价值。如果某物品超过背包容量,则该物品一定不放入背包,问题变为剩余i-1个物品装入容量为j的背包所能产生的最大价值;否则该物品装入背包,问题变为剩余i-1个物品装入容量为j-w[i]的背包所能产生的最大价值加上物品i的价值d[i],思路相当清晰,因此我们可以编写出以下代码。

4 / 7

搜索更多关于: 算法设计-01背包问题的分析 的文档
算法设计-01背包问题的分析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4uwao170lf8c83h0epna2cg5h8inz6016a6_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top