µÚÒ»·¶ÎÄÍø - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

¸ßµÈÊýѧ»ù´¡ÐγÉÐÔ¿¼ºË²á¼°´ð°¸

À´Ô´£ºÓû§·ÖÏí ʱ¼ä£º2025/11/29 9:59:05 ±¾ÎÄÓÉloading ·ÖÏí ÏÂÔØÕâÆªÎĵµÊÖ»ú°æ
˵Ã÷£ºÎÄÕÂÄÚÈݽö¹©Ô¤ÀÀ£¬²¿·ÖÄÚÈÝ¿ÉÄܲ»È«£¬ÐèÒªÍêÕûÎĵµ»òÕßÐèÒª¸´ÖÆÄÚÈÝ£¬ÇëÏÂÔØwordºóʹÓá£ÏÂÔØwordÓÐÎÊÌâÇëÌí¼Ó΢ÐźÅ:xxxxxxx»òQQ£ºxxxxxx ´¦Àí£¨¾¡¿ÉÄܸøÄúÌṩÍêÕûÎĵµ£©£¬¸ÐлÄúµÄÖ§³ÖÓëÁ½⡣

¸ßµÈÊýѧ»ù´¡µÚÒ»´Î×÷Òµ

µÚ1Õ º¯Êý

µÚ2Õ ¼«ÏÞÓëÁ¬Ðø

£¨Ò»£©µ¥ÏîÑ¡ÔñÌâ

¢±ÏÂÁи÷º¯Êý¶ÔÖУ¬£¨ C £©ÖеÄÁ½¸öº¯ÊýÏàµÈ£®

2 A. f(x)?(x)£¬g(x)?x B. f(x)?x2£¬g(x)?x

x2?1 C. f(x)?lnx£¬g(x)?3lnx D. f(x)?x?1£¬g(x)?

x?1 ¢²É躯Êýf(x)µÄ¶¨ÒåÓòΪ(??,??)£¬Ôòº¯Êýf(x)?f(?x)µÄͼÐιØÓÚ£¨C£©¶Ô³Æ£®

3 A. ×ø±êÔ­µã B. xÖá C. yÖá D. y?x ¢³ÏÂÁк¯ÊýÖÐÎªÆæº¯ÊýÊÇ£¨ B £©£®

A. y?ln(1?x) B. y?xcosx

2ax?a?x C. y? D. y?ln(1?x)

2 ¢´ÏÂÁк¯ÊýÖÐΪ»ù±¾³õµÈº¯ÊýÊÇ£¨C£©£® A. y?x?1 B. y??x C. y?x2 D. y????1,x?0

1,x?0?¢µÏÂÁм«ÏÞ´æ¼ÆËã²»ÕýÈ·µÄÊÇ£¨ D £©£®

x2?1 B. limln(1?x)?0 A. lim2x?0x??x?2sinx1 C. lim?0 D. limxsin?0

x??x??xx ¢¶µ±x?0ʱ£¬±äÁ¿£¨ C £©ÊÇÎÞÇîСÁ¿£®

1sinx A. B.

xx1 C. xsin D. ln(x?2)

x ¢·Èôº¯Êýf(x)ÔÚµãx0Âú×㣨 A £©£¬Ôòf(x)ÔÚµãx0Á¬Ðø¡£

A. limf(x)?f(x0) B. f(x)ÔÚµãx0µÄij¸öÁÚÓòÄÚÓж¨Òå

x?x0 C. lim?f(x)?f(x0) D. lim?f(x)?lim?f(x)

x?x0x?x0x?x0

£¨¶þ£©Ìî¿ÕÌâ

x2?9?ln(1?x)µÄ¶¨ÒåÓòÊÇ£¨3£¬ +¡Þ)£® ¢±º¯Êýf(x)?x?322 ¢²ÒÑÖªº¯Êýf(x?1)?x?x£¬Ôòf(x)? x - x £®

1x1/ 2

¢³lim(1?£® )? ex??2x1?x? ¢´Èôº¯Êýf(x)??(1?x),x?0£¬ÔÚx?0´¦Á¬Ðø£¬Ôòk? e£®

?x?0?x?k,?x?1,x?0 ¢µº¯Êýy??µÄ¼ä¶ÏµãÊÇ x=0 £®

?sinx,x?0 ¢¶Èôlimf(x)?A£¬Ôòµ±x?x0ʱ£¬f(x)?A³ÆÎª ÎÞÇîСÁ¿ £®

x?x0

£¨Èý£©¼ÆËãÌâ ¢±É躯Êý

?ex,f(x)???x, ¢²Çóº¯Êýy?lglgx?0x?0 Çó£ºf(?2),f(0),f(1)£®

½â£ºf(-2) = - 2£¬f(0) = 0£¬ f(1) = e

2x?1µÄ¶¨ÒåÓò£® x2x?1 ½â£ºÓÉ?0½âµÃx<0»òx>1/2£¬º¯Êý¶¨ÒåÓòΪ(-¡Þ£¬0)¡È(1/2£¬+¡Þ)

x ¢³Ôڰ뾶ΪRµÄ°ëÔ²ÄÚÄÚ½ÓÒ»ÌÝÐΣ¬ÌÝÐεÄÒ»¸öµ×±ßÓë°ëÔ²µÄÖ±¾¶Öغϣ¬ÁíÒ»µ×±ßµÄÁ½¸ö¶ËµãÔÚ°ëÔ²ÉÏ£¬bÊÔ½«ÌÝÐεÄÃæ»ý±íʾ³ÉÆä¸ßµÄº¯Êý£® ½â£ºÈçͼÌÝÐÎÃæ»ýA=(R+b)h£¬ÆäÖÐb? 22¡à

R2?h2

A?(R?R?h)hh

sin3x3sin3x3x?3lim?lim¢´Çó x?0sin2xx?02sin2x22xx2?1x?1lim?lim(x?1)??2x??1sin(x?1)x??1sin(x?1)¢µÇó

RRR

¢¶Çó

¢·Çó£®

¢¸Çó ¢¹Çó

tan3xsin3xlim?lim3cos3x?3x?0x?0x3x1?x2?1(1?x2?1)(1?x2?1)lim?limx?0x?0sinx(1?x2?1)sinxx?lim?lim?022x?0x?0(1?x?1)sinx1?x?1sinxx?1xx?3?4x?4xlim()?lim()?lim(1?)x??x?3x??x??x?3x?3x?3(1?x2)?1x?4?4?4[(1?)]2x?6x?8(x?2)(?x?x34)?2?e?4?limlim?lim

x?4x2?5x?4x?x?4(x?1)(x??44)33 (1?) ¢ºÉ躯Êý x?3?(x?2)2,x?1?f(x)??x,?1?x?1ÌÖÂÛf(x)µÄÁ¬ÐøÐÔ£¬²¢Ð´³öÆäÁ¬ÐøÇø¼ä£®

?x?1,x??1?x?1

½â£º

x?1lim?f(x)?(1?2)2?1?lim?f(x)?1

limf(x)?1?f(1)x?1limf(x)??1?limf(x)??1?1?0x??1?x??1?¡àº¯ÊýÔÚx=1´¦Á¬Ðø

x??1limf(x)

²»´æÔÚ£¬¡àº¯ÊýÔÚx=-1´¦²»Á¬Ðø

¸ßµÈÊýѧ»ù´¡µÚ¶þ´Î×÷Òµ µÚ3Õ µ¼ÊýÓë΢·Ö

£¨Ò»£©µ¥ÏîÑ¡ÔñÌâ

f(x)f(x)´æÔÚ£¬Ôòlim?£¨ B £©£®

x?0x?0xx A. f(0) B. f?(0) C. f?(x) D. 0

f(x0?2h)?f(x0) ¢²Éèf(x)ÔÚx0¿Éµ¼£¬Ôòlim?£¨D£©£®

h?02h A. ?2f?(x0) B. f?(x0) C. 2f?(x0) D. ?f?(x0)

¢±Éèf(0)?0ÇÒ¼«ÏÞlimf(1??x)?f(1)?£¨A£©£®

?x?0?x A. e B. 2e

11 C. e D. e

24 ¢´Éèf(x)?x(x?1)(x?2)?(x?99)£¬Ôòf?(0)?£¨D£©£®

¢³Éèf(x)?e£¬Ôòlimx A. 99 B. ?99 C. 99! D. ?99! ¢µÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨ C £©£®

A. Èôf(x)ÔÚµãx0Óм«ÏÞ£¬ÔòÔÚµãx0¿Éµ¼£® B. Èôf(x)ÔÚµãx0Á¬Ðø£¬ÔòÔÚµãx0¿Éµ¼£® C. Èôf(x)ÔÚµãx0¿Éµ¼£¬ÔòÔÚµãx0Óм«ÏÞ£® D. Èôf(x)ÔÚµãx0Óм«ÏÞ£¬ÔòÔÚµãx0Á¬Ðø£® £¨¶þ£©Ìî¿ÕÌâ

1?2?xsin,x?0 ¢±É躯Êýf(x)??£¬Ôòf?(0)? 0 £® x?x?0?0,df(lnx)x2xx? (2/x)lnx+5/x £® ¢²Éèf(e)?e?5e£¬Ôò

dxx?1ÔÚ(1,2)´¦µÄÇÐÏßбÂÊÊÇ 1/2 £®

¦Ð ¢´ÇúÏßf(x)?sinxÔÚ(,1)´¦µÄÇÐÏß·½³ÌÊÇ y=1 £®

42x2x ¢µÉèy?x£¬Ôòy?? 2x(lnx+1) £®

¢³ÇúÏßf(x)? ¢¶Éèy?xlnx£¬Ôòy??? 1/x £®

£¨Èý£©¼ÆËãÌâ

¢±ÇóÏÂÁк¯ÊýµÄµ¼Êýy?£º

¢Åy?(xx?3)ex y=(x3/2+3)ex£¬y£§=3/2x1/2ex+(x3/2+3)ex

=(3/2x1/2+x3/2+3)ex

¢Æy?cotx?x2lnx y£§=-csc2x + 2xlnx +x

x2¢Çy? y£§=(2xlnx-x)/ln2x

lnxcosx?2xx32x6

¢Èy? y£§=[(-sinx+2ln2)x-3x(cosx+2)]/x

x3 ¢Éy?lnx?x= sinx2

¢Êy?x4?sinxlnx y£§=4x3-cosxlnx-sinx/x

1(?2x)sinx?(lnx?x2)cosxxsin2xsinx?x2x2x2x

¢Ëy? y£§=[(cosx+2x)3-(sinx+x)3ln3]/3

3x=[cosx+2x-(sinx+x2)ln3]/3x

¢Ìy?extanx?lnx y£§=extanx+exsec2x+1/x = ex(tanx+sec2x)+1/x ¢²ÇóÏÂÁк¯ÊýµÄµ¼Êýy?£º ¢Åy?e1?x ¢Æy?lncosx3

2¢Çy?xxx y=x7/8 y£§=(7/8)x -1/8

¢Èy?3x?x ¢Éy?cos2ex ¢Êy?cosex

¢Ëy?sinnxcosnx y£§=nsinn-1xcosxcosnx - nsinnxsin nx ¢Ìy?5sinx ¢Íy?esinx ¢Îy?xx?ex ¢Ïy?xe?ee

¢³ÔÚÏÂÁз½³ÌÖУ¬y?y(x)ÊÇÓÉ·½³ÌÈ·¶¨µÄº¯Êý£¬Çóy?£º ¢Åycosx?e2y ·½³Ì¶ÔxÇóµ¼£ºy£§cosx-ysinx=2 y£§e2y

22222xxy£§=ysinx / (cosx-2e2y)

¢Æy?cosylnx ·½³Ì¶ÔxÇóµ¼£ºy £§= y £§(-siny)lnx +(1/x)cosy

y£§=[(1/x)cosy] / (1+sinylnx)

x2¢Ç2xsiny? ·½³Ì¶ÔxÇóµ¼£º2siny + y£§2xcosy=(2xy-x2 y£§)/y2

yy£§=2(xy ¨Cy2siny) /(x2+2xy2cosy)

¢Èy?x?lny ·½³Ì¶ÔxÇóµ¼£ºy£§=1+ y£§/y£¬ y£§=y /(y-1)

¢Élnx?ey?y2 ·½³Ì¶ÔxÇóµ¼£º1/x+ y£§ey=2y y£§£¬ y£§=1/x(2y-ey)

¢Êy2?1?exsiny ·½³Ì¶ÔxÇóµ¼£º2y y£§=exsiny + y£§ excosy

y£§= exsiny/(2y- excosy)

¢Ëey?ex?y3 ·½³Ì¶ÔxÇóµ¼£ºy£§ey =ex -3y2 y£§£¬ y£§=ex/ey+3y2 ¢Ìy?5x?2y ·½³Ì¶ÔxÇóµ¼£ºy£§=5xln5 + y£§2yln2£¬ y£§=5xln5 /(1-2yln2) ¢´ÇóÏÂÁк¯ÊýµÄ΢·Ödy£º ¢Åy?cotx?cscx

lnx sinx1?x¢Çy?arcsin

1?x1?x¢Èy?3

1?x¢Éy?sin2ex

¢Æy?¢Êy?tanex

¢µÇóÏÂÁк¯ÊýµÄ¶þ½×µ¼Êý£º ¢Åy?xlnx ¢Æy?xsinx ¢Çy?arctanx ¢Èy?3x £¨ËÄ£©Ö¤Ã÷Ìâ

Éèf(x)Êǿɵ¼µÄÆæº¯Êý£¬ÊÔÖ¤f?(x)ÊÇżº¯Êý£®

Ö¤Ã÷£ºÓÉ f(x)= - f(-x) Çóµ¼f£§(x)= - f£§(-x)(-x)£§ f£§(x)= f£§(-x)£¬ ¡àf£§(x)ÊÇżº¯Êý

23

¸ßµÈÊýѧ»ù´¡µÚÈý´Î×÷Òµ

µÚ4Õ µ¼ÊýµÄÓ¦ÓÃ

£¨Ò»£©µ¥ÏîÑ¡ÔñÌâ

¢±Èôº¯Êýf(x)Âú×ãÌõ¼þ£¨D£©£¬Ôò´æÔÚ??(a,b)£¬Ê¹µÃf(?)? A. ÔÚ(a,b)ÄÚÁ¬Ðø B. ÔÚ(a,b)Äڿɵ¼ C. ÔÚ(a,b)ÄÚÁ¬ÐøÇҿɵ¼

D. ÔÚ[a,b]ÄÚÁ¬Ðø£¬ÔÚ(a,b)Äڿɵ¼

¢²º¯Êýf(x)?x?4x?1µÄµ¥µ÷Ôö¼ÓÇø¼äÊÇ£¨D£©£® A. (??,2) B. (?1,1) C. (2,??) D. (?2,??) ¢³º¯Êýy?x?4x?5ÔÚÇø¼ä(?6,6)ÄÚÂú×㣨A£©£® A. Ïȵ¥µ÷ϽµÔÙµ¥µ÷ÉÏÉý B. µ¥µ÷Ͻµ C. Ïȵ¥µ÷ÉÏÉýÔÙµ¥µ÷Ͻµ D. µ¥µ÷ÉÏÉý

¢´º¯Êýf(x)Âú×ãf?(x)?0µÄµã£¬Ò»¶¨ÊÇf(x)µÄ£¨C£©£®

A. ¼ä¶Ïµã B. ¼«Öµµã C. פµã D. ¹Õµã

¢µÉèf(x)ÔÚ(a,b)ÄÚÓÐÁ¬ÐøµÄ¶þ½×µ¼Êý£¬x0?(a,b)£¬Èôf(x)Âú×㣨C £©£¬Ôòf(x)ÔÚx0È¡µ½¼«Ð¡Öµ£®

A. f?(x0)?0,f??(x0)?0 B. f?(x0)?0,f??(x0)?0 C. f?(x0)?0,f??(x0)?0 D. f?(x0)?0,f??(x0)?0

¢¶Éèf(x)ÔÚ(a,b)ÄÚÓÐÁ¬ÐøµÄ¶þ½×µ¼Êý£¬ÇÒf?(x)?0,f??(x)?0£¬Ôòf(x)ÔÚ´ËÇø¼äÄÚÊÇ£¨A£©£® A. µ¥µ÷¼õÉÙÇÒÊÇ͹µÄ B. µ¥µ÷¼õÉÙÇÒÊǰ¼µÄ C. µ¥µ÷Ôö¼ÓÇÒÊÇ͹µÄ D. µ¥µ÷Ôö¼ÓÇÒÊǰ¼µÄ

¢·É躯Êýf(x)?ax?(ax)?ax?aÔÚµãx?1´¦È¡µÃ¼«´óÖµ?2£¬Ôòa?£¨ £©£®

3222f(b)?f(a)£®

b?a1 31 C. 0 D. ?

3 A. 1 B.

£¨¶þ£©Ìî¿ÕÌâ

¢±Éèf(x)ÔÚ(a,b)Äڿɵ¼£¬x0?(a,b)£¬ÇÒµ±x?x0ʱf?(x)?0£¬µ±x?x0ʱf?(x)?0£¬Ôòx0ÊÇ

f(x)µÄ ¼«Ð¡Öµ µã£®

¢²Èôº¯Êýf(x)ÔÚµãx0¿Éµ¼£¬ÇÒx0ÊÇf(x)µÄ¼«Öµµã£¬Ôòf?(x0)? 0 £®

¢³º¯Êýy?ln(1?x)µÄµ¥µ÷¼õÉÙÇø¼äÊÇ (-¡Þ£¬0) £® ¢´º¯Êýf(x)?eµÄµ¥µ÷Ôö¼ÓÇø¼äÊÇ (0£¬+¡Þ) £®

¢µÈôº¯Êýf(x)ÔÚ[a,b]ÄÚºãÓÐf?(x)?0£¬Ôòf(x)ÔÚ[a,b]ÉϵÄ×î´óÖµÊÇ f(a) £® ¢¶º¯Êýf(x)?2?5x?3xµÄ¹ÕµãÊÇ x=0 £®

¢·Èôµã(1,0)ÊǺ¯Êýf(x)?ax?bx?2µÄ¹Õµã£¬Ôòa? £¬b? £®

£¨Èý£©¼ÆËãÌâ

¢±Çóº¯Êýy?(x?1)(x?5)2µÄµ¥µ÷Çø¼äºÍ¼«Öµ£® ½â£ºy£§=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)

ÓÉy£§=0ÇóµÃפµãx=1£¬5.

32323x22Áбí (-¡Þ£¬1) x y£§ + 1 0 (1£¬5) ¡ª 5 0 (5£¬+¡Þ) + y ¡ü Ymax=32 ¡ý Ymin=0 ¡ü (-¡Þ£¬1)ºÍ (5£¬+¡Þ)Ϊµ¥µ÷ÔöÇø¼ä£¬ (1£¬5)Ϊµ¥µ÷¼õÇø¼ä£¬¼«ÖµÎªYmax=32£¬Ymin=0¡£

22 ¢²Çóº¯Êýy?3(x?2x)ÔÚÇø¼ä[0,3]Äڵļ«Öµµã£¬²¢Çó×î´óÖµºÍ×îСֵ£®

½â£ºy£§=2x-2£¬×¤µãx=1ÊǼ«Ð¡Öµµã£¬ÔÚÇø¼ä[0£¬3]ÉÏ×î´óֵΪy(3)=6£¬×îСֵΪy(1)=2¡£ x y£§ y 0 - 3 (0£¬1) - ¡ý 1 0 2 (1£¬3) + ¡ü 3 6

¢³ÊÔÈ·¶¨º¯Êýy?ax3?bx2?cx?dÖеÄa,b,c,d£¬Ê¹º¯ÊýͼÐιýµã(?2,44)ºÍµã(1,?10)£¬ÇÒx??2ÊÇפµã£¬x?1Êǹյ㣮

¢´ÇóÇúÏßy2?2xÉϵĵ㣬ʹÆäµ½µãA(2,0)µÄ¾àÀë×î¶Ì£®

½â£ºÇúÏßy2=2xÉϵĵã(x£¬y)µ½µãA(2£¬0)µÄ¾àÀëd?ÓÉ(d 2)£§=0ÇóµÃx=1£¬Óɴ˵ÃËùÇóµãÓÐÁ½¸ö£º(1,(x?2)2?(2x?0)2 d 2=x2-2x+4£¬(d 2)£§=2x-2£¬

2),(1,?2)

¢µÔ²ÖùÌåÉϵ׵ÄÖÐÐĵ½Ïµ׵ıßÑØµÄ¾àÀëΪL£¬Îʵ±µ×°ë¾¶Óë¸ß·Ö±ðΪ¶àÉÙʱ£¬Ô²ÖùÌåµÄÌå»ý×î´ó£¿

½â ÓÒͼΪԲÖùÌåµÄ½ØÃ棬 ÓÉͼ¿ÉµÃR2=L2-H2

Ô²ÖùÌåµÄÌå»ýV=¦ÐR2H=¦Ð(L2-H2)H

R3L£¬ 3623?L3×î´ó¡£ ´ËʱR?L£¬Ô²ÖùÌåµÄÌå»ýV?93

¢¶Ò»Ìå»ýΪVµÄÔ²ÖùÌ壬Îʵװ뾶Óë¸ß¸÷Ϊ¶àÉÙʱ±íÃæ»ý×îС£¿

V£§=¦Ð(L2-3H2)£¬ÓÉV£§=0½âµÃH?½â£ºÔ²ÖùÌåµÄ±íÃæ»ýS=2¦ÐR2+2¦ÐRH

ÓÉÌå»ýV=¦ÐR2H½âµÃH=V/¦ÐR2 ¡à S=2¦ÐR+2V/ R

S£§=4¦ÐR - 2V/ R2=2(2¦ÐR3 - V) / R2 ÓÉS£§=0½âµÃR?32

LHRH3VV£¬´ËʱH??2?4?238V??2R 22?V´ð£ºµ±¸ßÓëµ×ÃæÖ±¾¶ÏàµÈʱԲÖùÌå±íÃæ»ý×îС¡£

¢·Óû×öÒ»¸öµ×ΪÕý·½ÐΣ¬ÈÝ»ýΪ62.5Á¢·½Ã׵ij¤·½Ì忪¿ÚÈÝÆ÷£¬ÔõÑù×ö·¨ÓÃÁÏ×îÊ¡£¿

½â£ºÉ賤·½Ìåµ×Ãæ±ß³¤Îªa¸ßΪh

±íÃæ»ýS=a 2+4ah

¡ßa 2h =62.5£¬¡àh =62.5/ a 2

S=a 2+250/a£¬ S£§=2a - 250/a 2=(2a 3 ¨C 250)/a 2£¬

ÓÉS£§=0½âµÃa =5m£¬h =2.5m£¬´ËʱS=75m2×îС£¬¼´ÓÃÁÏ×îÊ¡¡£ ah¢¸´ÓÃæ»ýΪSµÄËùÓоØÐÎÖУ¬ÇóÆäÖܳ¤×îСÕߣ®

¢¹´ÓÖܳ¤ÎªLµÄËùÓоØÐÎÖУ¬ÇóÆäÃæ»ý×î´óÕߣ®

£¨ËÄ£©Ö¤Ã÷Ìâ

¢±µ±x?0ʱ£¬Ö¤Ã÷²»µÈʽx?ln(1?x)£®

Ö¤Ã÷£ºÁîf(x)=x-ln(1+x)£¬ f(x)=1-1/ (1+x)=x/ (1+x)

µ±x£¾0ʱÓÐf£§(x)£¾0£¬f(x)ΪÔöº¯Êý£¬ÓÖf(0)=0

¡àµ±x£¾0ʱf (x)£¾0£¬¼´x£¾ln(1+x)

¢²µ±x?0ʱ£¬Ö¤Ã÷²»µÈʽex?x?1£®

Ö¤Ã÷£ºÁîf(x)=ex/ (x+1)£¬

f£§(x)=[ ex(x+1)- ex]/ (x+1)2=x ex/ (x+1)2

µ±x£¾0ʱÓÐf£§(x)£¾0£¬f(x)ΪÔöº¯Êý£¬ÓÖf(0)=1 ¡àµ±x£¾0ʱf (x)£¾1£¬¼´ex£¾x+1

¸ßµÈÊýѧ»ù´¡µÚËÄ´Î×÷Òµ

µÚ5Õ ²»¶¨»ý·Ö

µÚ6Õ ¶¨»ý·Ö¼°ÆäÓ¦ÓÃ

£¨Ò»£©µ¥ÏîÑ¡ÔñÌâ

1£¬Ôòf?(x)?£¨D£©£® x1 A. lnx B. ?2

x12 C. D. 3

xx ¢±Èôf(x)µÄÒ»¸öÔ­º¯ÊýÊÇ¢²ÏÂÁеÈʽ³ÉÁ¢µÄÊÇ£¨D£©£® A.

?f?(x)dx??f(x) B. ?df(x)?f(x)

C. df(x)dx?f(x) D. ¢³Èôf(x)?cosx£¬Ôò

df(x)dx?f(x) dx??f?(x)dx?£¨B£©£®

A. sinx?c B. cosx?c C. ?sinx?c D. ?cosx?c

d23xf(x)dx?£¨D£©£® ?dx233 A. f(x) B. xf(x)

113 C. f(x) D. f(x)

331 ¢µÈô?f(x)dx?F(x)?c£¬Ôò?f(x)dx?£¨B£©£®

x A. F(x)?c B. 2F(x)?c

1 C. F(2x)?c D. F(x)?c

x ¢¶ÓÉÇø¼ä[a,b]ÉϵÄÁ½Ìõ¹â»¬ÇúÏßy?f(x)ºÍy?g(x)ÒÔ¼°Á½ÌõÖ±Ïßx?aºÍx?bËùΧ³ÉµÄÆ½ÃæÇø

¢´

ÓòµÄÃæ»ýÊÇ£¨ £©£® A. C.

??ba[f(x)?g(x)]dx B. f(x)?g(x)dx D.

??bab[g(x)?f(x)]dx

baa[f(x)?g(x)]dx

¢·ÏÂÁÐÎÞÇîÏÞ»ý·ÖÊÕÁ²µÄÊÇ£¨D£©£®

??1 A. ?dx B. ?exdx

1x0??1??1 C. ?dx D. ?dx

11x2x??

£¨¶þ£©Ìî¿ÕÌâ

¢±º¯Êýf(x)µÄ²»¶¨»ý·ÖÊÇ

?f(x)dx

¢²Èôº¯ÊýF(x)ÓëG(x)ÊÇͬһº¯ÊýµÄÔ­º¯Êý£¬ÔòF(x)ÓëG(x)Ö®¼äÓйØÏµÊ½ F(x)=G(x)+c £®

x2x2 ¢³dedx? £®

?edx ¢´(tanx)?dx? tanx+c £® ¢µÈô ¢¶

3??f(x)dx?cos3x?c£¬Ôòf?(x)? -9cos3x £®

15(sinx?)dx? 3 £® ??32??1 ¢·ÈôÎÞÇî»ý·Ö?dxÊÕÁ²£¬Ôòp £¾1 £® p1x

£¨Èý£©¼ÆËãÌâ

1xdx??cos1(?1)dx??cox1d(1)??sin1?c ¢±??xx2?xxxx2ex1dx?2?ex ¢²?dx?2?exd(x)?2ex?c x2x11 ¢³?dx??d(lnx)?ln|lnx|?c

xlnxlnx11x1 ¢´?xsin2xdx??x(?cos2x)?dx?(?xcos2x??(x)?cos2xdx)??cos2x?sin2x?c

2224e3?lnxe31117¢µ?dx??[?lnx()]dx?(3lnx?ln2x)|?3??

11xxx2221111?2x11?21?2x13e?2?1?2x1?2x?2x¢¶?xedx???x(e)?dx?(xe|??edx)?(e?e|)?

000020222422exexeex211x2e3?e2?dx??|?¢·?xlnxdx??()?lnxdx?(lnx)|??

11111222x244elnxe1e1e111e2?¢¸? dx??()lnxdx??lnx?dx????1?|1?1x2|?1x1x2xex1ecos

£¨ËÄ£©Ö¤Ã÷Ìâ

¢±Ö¤Ã÷£ºÈôf(x)ÔÚ[?a,a]ÉϿɻý²¢ÎªÆæº¯Êý£¬ÔòÖ¤Ã÷£º

0?a?af(x)dx?0£®

?a?af(x)dx??f(x)dx??f(x)dx£¬ÔÚµÚÒ»ÏîÖÐÁî

?a00aaa00?aa0ax = - t£¬

aÔò??af(x)dx???aÖ¤Ã÷£º

0f(?t)dt???f(t)dt???f(x)dx£¬¡à?f(x)dx?0

¢²Ö¤Ã÷£ºÈôf(x)ÔÚ[?a,a]ÉϿɻý²¢ÎªÅ¼º¯Êý£¬Ôò

??af(x)dx?2?f(x)dx£®

0?a?af(x)dx??f(x)dx??f(x)dx£¬ÔÚµÚÒ»ÏîÖÐÁî

?a00aaa00?aaa0ax = - t£¬

a0Ôò??af(x)dx???a¢³Ö¤Ã÷£º

f(?t)dt??f(t)dt??f(x)dx£¬¡à?f(x)dx?2?f(x)dx

0??af(x)dx??[f(x)?f(?x)]dx

ËÑË÷¸ü¶à¹ØÓÚ£º ¸ßµÈÊýѧ»ù´¡ÐγÉÐÔ¿¼ºË²á¼°´ð°¸ µÄÎĵµ
¸ßµÈÊýѧ»ù´¡ÐγÉÐÔ¿¼ºË²á¼°´ð°¸.doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ£¬·½±ã¸´ÖÆ¡¢±à¼­¡¢ÊղغʹòÓ¡
±¾ÎÄÁ´½Ó£ºhttps://www.diyifanwen.net/c5i84s8u3u66tck09hlht_1.html£¨×ªÔØÇë×¢Ã÷ÎÄÕÂÀ´Ô´£©

Ïà¹ØÍÆ¼ö£º

ÈÈÃÅÍÆ¼ö
Copyright © 2012-2023 µÚÒ»·¶ÎÄÍø °æÈ¨ËùÓÐ ÃâÔðÉùÃ÷ | ÁªÏµÎÒÃÇ
ÉùÃ÷ :±¾ÍøÕ¾×ðÖØ²¢±£»¤ÖªÊ¶²úȨ£¬¸ù¾Ý¡¶ÐÅÏ¢ÍøÂç´«²¥È¨±£»¤ÌõÀý¡·£¬Èç¹ûÎÒÃÇ×ªÔØµÄ×÷Æ·ÇÖ·¸ÁËÄúµÄȨÀû,ÇëÔÚÒ»¸öÔÂÄÚ֪ͨÎÒÃÇ£¬ÎÒÃǻἰʱɾ³ý¡£
¿Í·þQQ£ºxxxxxx ÓÊÏ䣺xxxxxx@qq.com
ÓåICP±¸2023013149ºÅ
Top