第一范文网 - 专业文章范例文档资料分享平台

2008年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)

来源:用户分享 时间:2025/7/21 4:37:17 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2008年全国各地高考数学试题及解答分类汇编大全

(03函数的性质及其应用)

一、选择题

1.(2008安徽文)函数f(x)?(x?1)?1(x?0)的反函数为(C )

A.f?12(x)?1?x?1(x?1) B. f?1(x)?1?x?1(x?1)

x?1(x?2) D. f?1(x)?1?x?1(x?2)

?1C.f(x)?1?

x2.(2008安徽理)在同一平面直角坐标系中,函数y?g(x)的图象与y?e的图象关于直线y?x对

称。而函数y?f(x)的图象与y?g(x)的图象关于y轴对称,若f(m)??1,则m的值是

( B )

11 C.e D. eex3.(2008安徽理)若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)?g(x)?e,则有(D) A.f(2)?f(3)?g(0) B.g(0)?f(3)?f(2) C.f(2)?g(0)?f(3) D.g(0)?f(2)?f(3)

A.?e

B.? 4.(2008北京文)若a?log3π,b?log76,c?log20.8,则( A ) (A)a>b>c (B)b>a>c (C)c>a>b

0.5(D)b>c>a

5.(2008北京理)若a?2,b?logπ3,c?log2sin A.a?b?c B.b?a?c 6.(2008北京文)函数f(x)=(x-1)2+1(x<1)的反函数为( B ) (A)f--1(x)=1+x?1(x>1)

2π,则( A ) 5C.c?a?b D.b?c?a

(B)f--1(x)=1-x?1(x>1)

(C)f--1(x)=1+x?1(x≥1) (D)f--1(x)=1-x?1(x≥1)

7.(2008北京文、理)如图,动点P在正方体ABCD?A1B1C1D1的对角线BD1上.过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N.设BP?x,MN?y,则函数y?f(x)的图象大致是( B )

D1

CA1 D M B1 P N C

y y y y 1

O x O x O x O x A. B. C. D. A B

8. (2008广东文)命题“若函数f(x)?logax(a?0,a?1)在其定义域内是减函数,则loga2?0”的逆否命题是(B )

A.若loga2?0,则函数f(x)?logax(a?0,a?1)在其定义域内不是减函数 B.若loga2?0,则函数f(x)?logax(a?0,a?1)在其定义域内不是减函数 C.若loga2?0,则函数f(x)?logax(a?0,a?1)在其定义域内是减函数 D.若loga2?0,则函数f(x)?logax(a?0,a?1)在其定义域内是减函数

1

9.(2008福建文、理)函数f(x)?x?sinx?1(x?R),若f(a)?2,则f(?a)的值为(B) A.3 B.0 C.-1 D.-2

10. (2008湖北文)已知f(x)在R上是奇函数,且

3f(x?4)?f(x),当x?(0,2)时,f(x)?2x2,则f(7)?(A )

A.-2 B.2 C.-98 D.98

11n(x2?3x?2)??x2?3x?4的定义域为(D ) x A.(??,?4][2,??) B. (?4,0)?(0,1) C.[?4,0)(0,1] D.[?4,0)?(0,1]

11.(2008湖北文、理)函数f(x)?

212.(2008湖南文). 函数f(x)?x(x?0)的反函数是( B )

A.fC.f?1?1(x)?x(x?0) B. f?1?1(x)??x(x?0)

(x)???x(x?0) D.f(x)??x2(x?0)

13.(2008湖南文)下面不等式成立的是( A )

A.log32?log23?log25 B.log32?log25?log23 C.log23?log32?log25 D.log23?log25?log32

14.(2008江西文) 若函数y?f(x)的定义域是[0,2],则函数g(x)?A.[0,1] B.[0,1) C. [0,1)U(1,4] D.(0,1)

15.(2008江西理)若函数y?f(x)的值域是?,3?,则函数F?x??f?x??的值域是(B )

f(x)?2? A.[

f(2x)的定义域是(B ) x?1?1?111051010,3] B.[2,] C.[,] D.[3,] 232331414

16.(2008江西文)若0?x?y?1,则( C )

yxxyA.3?3 B.logx3?logy3 C.log4x?log4y D.()?()

17.(2008江西理)已知函数f?x??2mx?2?4?m?x?1,g?x??mx,若对于任一实数x,f?x?与

2g?x?的值至少有一个为正数,则实数m的取值范围是( B )

A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)

218.(2008江西文) 已知函数f(x)?2x?(4?m)x?4?m,g(x)?mx,若对于任一实数x,f(x)与

g(x)的值至少有一个为正数,则实数m的取值范围是( C ) A. [?4,4] B.(?4,4) C. (??,4) D.(??,?4)

19.(2008辽宁文) 若函数y?(x?1)(x?a)为偶函数,则a=( C ) A.?2

B.?1

C.1

D.2

20.(2008辽宁文)已知0?a?1,x?loga A.x?y?z

B.z?y?x

12?loga3,y?loga5,z?loga21?loga3,则(C)

2 C.y?x?z D.z?x?y

2

21.(2008辽宁文、理)将函数y?2?1的图象按向量a平移得到函数y?2 A.a?(?1,?1)

B.a?(1,?1)

C.a?(11),

xx?1的图象,则( A )

D.a?(?11),

22.(2008辽宁理) 设f(x)是连续的偶函数,且当x>0时f(x)是单调函数,则满足f(x)?f?的所有x之和为( C )

A.?3 B.3

A.{x|x≤1}

24.(2008全国Ⅰ卷理) 函数y?C.?8

D.8

?x?3???x?4?23.(2008全国Ⅰ卷文) 函数y?1?x?x的定义域为( D )

B.{x|x≥0} C.{x|x≥1或x≤0}

D.{x|0≤x≤1}

x(x?1)?x的定义域为( C )

A.x|x≥0 B.x|x≥1 C.x|x≥1U?0? D.x|0≤x≤1

25.(2008全国Ⅰ卷文、理) 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是( A )

s s s s ????????O A.

t O B.

t O C.

t O D.

t

26.(2008全国Ⅰ卷文)若函数y?f(x)的图象与函数y?lnx?1的图象关于直线y?x对称,则

f(x)?( A )

A.e

27.(2008全国Ⅰ卷理)若函数y?f(x?1)的图像与函数y?ln2x?2

B.e

2xC.e2x?1

D.e2x?2

x?1的图像关于直线y?x对称,则

f(x)?( B )

A.e

28.(2008全国Ⅰ卷理)设奇函数f(x)在(0,且f(1)?0,则不等式??)上为增函数,的解集为( D ) ,0)U(1,??) A.(?1

29.(2008全国Ⅱ卷文、理)函数f(x)?

2x?1

B.e

2xC.e2x?1

D.e2x?2

f(x)?f(?x)?0x?1)U(01), B.(??,D.(?1,0)U(01),

C.(??,?1)U(1,??)

1?x的图像关于( C ) x A.y轴对称 B. 直线y??x对称 C. 坐标原点对称 D. 直线y?x对称

?11)a?lnx,b?2lnx,c?ln3x,则( C ) 30.(2008全国Ⅱ卷文、理) 若x?(e,,A.a

B.c

C. b

D. b

31.(2008山东理)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( A )

(A) 3 (B)2 (C)1 (D)-1

3

2? x≤1,?1??1?x,32.(2008山东文)设函数f(x)??则f??的值为( A ) 2??f(2)??x?x?2,x?1,15278A. B.? C. D.18

16169

x33.(2008山东文)已知函数f(x)?loga(2?b?1)(a?0,a?1)的图象如图所示,则a,b满足的关系是( A )

A.0?ay ?1?b?1 ?1C.0?b?a??1

B.0?b?a ?1 ?1?1D.0?a?b?1

?1O x

?1 x?3?1+34.(2008陕西文\\理) 已知函数f(x)?2,f(x)是f(x)的反函数,若mn?16(m,n?R),则

f?1(m)?f?1(n)的值为( D )

A.10

B.4

C.1

D.?2

35.(2008陕西文) 定义在R上的函数f(x)满足f(x?y)?f(x)?f(y)?2xy(x,y?R),

f(1)?2,则f(?2)等于( A )

A.2

B.3

C.6

D.9

36.(2008陕西理)定义在R上的函数f(x)满足f(x?y)?f(x)?f(y)?2xy(x,y?R),f(1)?2,则f(?3)等于( C )

A.2 B.3

C.6

D.9

37.(2008四川文)函数y?ln?2x?1??x?? (A)y???1??的反函数是( C ) 2?1xe?1?x?R? (B)y?e2x?1?x?R? 2x1x(C)y??e?1??x?R? (D)y?e2?1?x?R?

2

38.(2008四川文、理)函数f?x?满足f?x??f?x?2??13,若f?1??2,则f?99??( C ) (A)13 (B)2 (C)

39.(2008天津文) 函数y?1?22132 (D) 213x(0≤x≤4)的反函数是( A )

B.y?(x?1)(0≤x≤4) D.y?x?1(0≤x≤4)

22A.y?(x?1)(1≤x≤3) C.y?x?1(1≤x≤3)

240.(2008天津文)设a?1,若对于任意的x??a,2a?,都有y???a,a??满足方程logax?logay?3,

这时a的取值的集合为( B )

A.a1?a≤2

??

B.aa≥2

??

C.a2≤a≤3

??

D.?2,3?

4

2008年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c6kfzn9adya3h0qq02ukg7f1wl0k4bu0151t_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top