第一范文网 - 专业文章范例文档资料分享平台

2019-2020学年福建省厦门市九年级(上)期末数学试卷

来源:用户分享 时间:2025/7/21 6:01:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴DH=FH=DP=PE,且DF=∴DE=DF=

a,

DH,DE=DP,

∵CD=CG+GE+DE=2,即2DF+EG=2, ∴2DF+y=2, ∵r=∴r=

(DF≤1),

a,

∵r2=(OD+a)2+a2, ∴5a2=(OD+a)2+a2, ∴OD=a,

∴OD=OM﹣MD=x﹣∴a=x﹣∴2∴2

,且2DF+y=2,

a+y=2, (x﹣

)+y=2,

∴y=﹣2x+6,

∵DF≤1,且2DF+EG=2, ∴EG≥0,即y≥0, ∴∴

<x≤

x+6(

<x≤

∴y与x的函数解析式为y=﹣2

25.【解答】解:(1)当m=0时,抛物线为y=x2﹣2, 则顶点坐标为(0,﹣2),

把(0,﹣2)代入直线l2:y=x+b,得b=﹣2, ∴b=﹣2;

(2)①∵y=x2﹣2mx+m2+2m﹣2=(x﹣m)2+(2m﹣2), ∴抛物线顶点为(m,2m﹣2),

当x=m时,对于直线l1:y=2m,对于直线l2:y=2m+b,

∵﹣<b<0,

∴2m﹣2<2m+b<2m, 即顶点在l1,l2的下方, ∴抛物线的顶点不在图象C上;

②设直线l1与抛物线交于A,B两点,且yA<yB, ∴x2﹣2mx+m2+2m﹣2=x+m, 解得,x1=m﹣1,x2=m+2,

∵yA<yB,且对于l1,y随x的增大而增大, ∴xA<xB,

∴xA=m﹣1,此时yA=2m﹣1,

设直线l2与抛物线交于C,D两点,且yC<yD, ∴x2﹣2mx+m2+2m﹣2=x+m+b,

整理,得x2﹣(2m+1)x+m2+m﹣2+b=0, △=4b+9, ∵b>﹣

∴4b+9>0, ∴x=

∵yC<yD,且对于l2,y随x的增大而增大, ∴xC<xD, ∴xD=∵yA﹣yD=又∵﹣

<b<0,

,此时yD=

+m+b,

∴﹣3﹣2b<0, 又∵

>0,

∴yA﹣yD<0,即yA<yD,

∵xA<m,即点A在抛物线对称轴左侧,则在抛物线对称轴的右侧,必存在点A的对称点A'(xA',yA'),其中yA'=yA, ∴yA'<yD, ∵抛物线开口向上,

∴当x<m时,y随x的增大而减小,

∵抛物线的顶点在l2的下方,故点C也在抛物线对称轴左侧,

设(xO,yO)是抛物线上A,C两点之间的任意一点,则有xA<xO<m, ∴yO<yA,

又∵在抛物线上必存在其对称点(xO',yO'),其中yO=yO', ∴yO'<yA,

即抛物线上A,C两点之间的任意点的对称点都在点D下方, 同理,抛物线上B,D两点之间的部分所有点的对称点都在点A上,

∴图象C上不存在这样的两点M(a1,b1)和N(a2,b2),其中a1≠a2,b1≠b2.

2019-2020学年福建省厦门市九年级(上)期末数学试卷.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c89kh8034fp41z4g1sgcd5uqa87qzsz016sq_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top