江苏省镇江市2018年中考数学试卷
一、填空题(本大题共有12小题,每小题2分,共计24分.) 1.-8的绝对值是________.
2.一组数据2,3,3,1,5的众数是________. 3.计算:(a2)3=________.
4.分解因式:x?1=________.
55.若分式有意义,则实数x的取值范围是________.
x?31?8=________. 6.计算:27.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为________. 8.反比例函数y=
2k(k≠0)的图像经过点A(-2,4),则在每一个象限内,y随x的增x大而________.(填“增大”或“减小”)
9.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=________°. 10.已知二次函数y=x2?4x?k的图像的顶点在x轴下方,则实数k的取值范围是_______. 11.如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B9对应点B′落在BA的延长线上,若sin∠B′AC=,则AC=________.
10B?ADA?AEGDCOBACB(第11题图)
(第12题图)
11112.如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已
333B(第9题图)
FC知△EFG的面积等于6,则菱形ABCD的面积等于________. 二、选择题(本大题共有5小题,每小题3分,共计15分.) 13. 0.000 182用科学记数法表示应为( )
A. 0.182?10 B.1.82×10?4 C.1.82×10?5 D.18.2×10?4 14.如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )
?3A.B.C.D.从正面看 (第14题图)
15.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,
然后他在这些扇形区域内分别标连接偶数数字2,4,6,?,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件
5“指针所落区域标注的数字大于8”的概率是,则n的取值为( )
6A.36
B.30
C.24
D.18
16.甲、乙两地相距80 km,一辆汽车上午9∶00从甲地出发驶往乙地,匀速行驶了一半的
路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午( ) A.10∶35
B.10∶40
C.10∶45
yQD.10∶50
Ay80PCBOxO(第15题图)
1(第16题图)
x
(第17题图)
17.如图,一次函数y=2x与反比例函数y=(k>0)的图像交于A,B两点,点P在以
kx3C(-2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k2的值为( )
49A.
32B.
25 18C.
32 259D.
8三、解答题(本大题共有11小题,共计81分,) 18.(每小题4分)
(1)计算:2?1?(2018??)0?sin30? (2)化简:(a?1)2?a(a?1)?1.
19.(每小题5分)
(1)解方程:
?2x?4?0x2=. (2)解不等式组: ?1?x?2x?1?x?1?4(x?2)20.如图,数轴上的点A,B,C,D表示的数分别为-3,-1,1,2,从A,B,C,D四点中
任意取两点,求所取两点之间的距离为2的概率.
21.小李读一本名著,星期六读了36页,第二天读了剩余部分的
-4-3-2-10123(第20题图)
1,这两天共读了整本书43的,这本名著共有多少页? 8
[来源:学+科+网]
22.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC. (1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC=________°.
ABEFCD
(第22题图)
23.某班50名学生的身高如下(单位:cm):
160 178 158 169 171
163 151 167 163 154
152 156 157 158 157
161 154 153 150 165
167 165 164 177 152
154 160 172 155 167
158 168 153 166 157
171 155 159 161 162
156 162 154 159 155
168 173 155 164 160
(1)小 用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本: 161,155,
174,163,152 ,请你计算小丽所抽取的这个样本的平均数; (2)小丽将这50个数据按身高相差4 cm分组 ,并制作了如下的表格:
身高 147.5~151.5[ 151.5~155.5 155.5~159.5 159.5~163.5 163.5~167.5 167.5~171.5 171.5~175.5 175.5~179.5 合计 ①m=________,n=________;
②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?
24.如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢
楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EH方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°,已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米,参考值:2≈1.41,3≈1.73.)
频数 11 8 4 频率 0.06 0.16 1 n 2[ 50 25.如图,一次函数y=kx?b(k≠0)的图像与x轴,y轴分别交于A(-9,0),B(0,
6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分. (1)求一次函数y=kx?b(k≠0)的表达式; (2)若△ACE的面积为11,求点E的坐标; (3)当∠CBE=∠ABO时,点E的坐标为________.
yBEOAlC(第25题图)
x
26.如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆
心,PA为半径的⊙P与对角线AC交于A,E两点. (1)如图2,当⊙P与边CD相切于点F时,求AP的长;
(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随
着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围________.
B图1
APDAEPDCB图2
FEC
27.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,
若∠ADB=46°,则∠DBE的度数为________°. (2)小明手中有一张矩形纸片ABCD,AB=4,AD=9. 【画一画】
如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CD所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚); 【算一算】
如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为
7GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;
3【验一验】
如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.
ADAEDC?EBB图1
CC图2
A?DA?AGAHKD
B?B?BF图3
CBI图4
C
28.如图,二次函数y=x2?3x的图像经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OMB按相似比2∶1放大,得到△OA′B′,二次函数y=ax2?bx?c(a≠0)的图像经过O,A′,B′三点.
(1)画出△OA′B′,试二次函数y=ax2?bx?c(a≠0)的表达式;
(2)点P(m,n)在二次函数y=x2?3x的图像上,m≠0,直线OP与二次函数y=
ax2?bx?c(a≠0)的图像交于点Q(异于点O).
①连接AP,若2AP>OQ,求m的取值范围;
②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2?bx?c(a≠0)的图像交于另一点Q′,与二次函数y=x2?3x的图像交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2?3x的图像交于点
P′.△Q′P′M∽△QB′N,则线段 NQ的长度等于________.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育2018年江苏省镇江市中考数学试题含答案(Word版)全文阅读和word下载服务。
相关推荐: