教师导案 九年级上册 第二十三章 旋转
课题: 23.1 图形的旋转(1)第一课时 [教学目标]:了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题. 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题. [教学重点]:旋转及对应点的有关概念及其应用. [教学难点]:从活生生的数学中抽出概念. [教具准备] 班班通 [教学过程] 一 、情境引学、目标激活 (学生活动)请同学们完成下面各题. 1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形. 2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′. 附案 二 、自主探学、尝试解决 圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质. (2)如何画一个图形关于一条直线(对称轴)?的对称图形并口述它既有的一些性质. (3)什么叫轴对称图形? 三 、合作研学、重组构建 我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究. 1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢??从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.?如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
1
教师导案 九年级上册 第二十三章 旋转
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略) 3.第1、2两题有什么共同特点呢? 共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度. 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角. 如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点. 四 、当堂检学、基础达标: 下面我们来运用这些概念来解决一些问题. 例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置? 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角. (2)经过旋转,点A和点B分别移动到点E和点F的位置. 五、变换拓学、发散迁移: 例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形. (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角. (3)指出,经过旋转,点A、B、C、D分别移到什么位置? (老师点评) (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)?画图略. (3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H. 最后强调,这个旋转中心是固定的,即正方形对角线的交点,?但旋转角和对应点都是不唯一的. 六 、作业布置: 教材P61 练习1、2、3. [教学反思]: 2
教师导案 九年级上册 第二十三章 旋转
课题:23.1 图形的旋转(2) 第二课时 [教学目标]1.理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用. 2.复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质. [教学重点]:图形的旋转的基本性质及其应用. [教学难点] :运用操作实验几何得出图形的旋转的三条基本性质. [教具准备] 班班通 [教学过程] 一 、情境引学、目标激活 (学生活动)老师口问,学生口答. 1.什么叫旋转?什么叫旋转中心?什么叫旋转角? 2.什么叫旋转的对应点? 附案 3
教师导案 九年级上册 第二十三章 旋转
二 、自主探学、尝试 请独立完成下面的题目. 如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形? (老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的. 三 、合作研学、重组构建 上面的解题过程中,能否得出什么结论,请回答下面的问题: 1.A、B、C、D、E、F到O点的距离是否相等? 2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗? 老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验. 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,?再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,?在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板. (分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1.线段OA与OA′,OB与OB′,OC与OC′有什么关系? 2.∠AOA′,∠BOB′,∠COC′有什么关系? 3.△ABC与△A′B′C′形状和大小有什么关系? 老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等. 2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,?即对应点与旋转中心所连线段的夹角称为旋转角. 3.△ABC和△A′B′C′形状相同和大小相等,即全等. 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等. 四 、当堂检学、基础达 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B?对应点的位置,以及旋转后的三角形. 分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,?又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示. 解:(1)连结CD (2)以CB为一边作∠BCE,使得∠BCE=∠ACD (3)在射线CE上截取CB′=CB 则B′即为所求的B的对应点. (4)连结DB′ 则△DB′C就是△ABC绕C点旋转后的图形. 4
相关推荐: