第2课时 磁场对运动电荷的作用
考纲解读 1.会计算洛伦兹力的大小,并能判断其方向.2.掌握带电粒子在匀强磁场中的匀速圆周运动,并能解决确定圆心、半径、运动轨迹、周期、运动时间等相关问题.
考点一 对洛伦兹力的理解
1.洛伦兹力
磁场对运动电荷的作用力叫洛伦兹力. 2.洛伦兹力的方向 (1)判定方法
左手定则:掌心——磁感线垂直穿入掌心;
四指——指向正电荷运动的方向或负电荷运动的反方向; 大拇指——指向洛伦兹力的方向.
(2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功). 3.洛伦兹力的大小
(1)v∥B时,洛伦兹力F=0.(θ=0°或180°) (2)v⊥B时,洛伦兹力F=qvB.(θ=90°) (3)v=0时,洛伦兹力F=0.
例1 如图1所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v0抛出,落在地面上的A点,若加一垂直纸面向里的匀强磁场,则小球的落点( )
图1
A.仍在A点
B.在A点左侧 D.无法确定
C.在A点右侧
解析 加上磁场后,洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小
mg-qvBcos θ
球在竖直方向的加速度ay= m落点应在A点的右侧. 答案 C 递进题组 1.[对洛伦兹力的理解]下列关于洛伦兹力的说法中,正确的是( ) A.只要速度大小相同,所受洛伦兹力就相同 B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变 C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变 答案 B 解析 因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F=qvB,当粒子速度与磁场平行时F=0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A选项错.因为+q改为-q且速度反向,由左手定则可知洛伦兹力方向不变,再由F=qvB知大小也不变,所以B选项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C选项错.因为洛伦兹力总与速度方向垂直,因此,洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D选项错. 2.[洛伦兹力的应用]如图2所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则( ) 图2 A.经过最高点时,三个小球的速度相等 B.经过最高点时,甲球的速度最小 C.甲球的释放位置比乙球的高 D.运动过程中三个小球的机械能均保持不变 答案 CD 1解析 三个小球在运动过程中机械能守恒,有mgh=mv2,在圆形轨道的最高点时对甲有qv1B 22 mv2mv2mv312 +mg=,对乙有mg-qv2B=,对丙有mg=,可判断v1>v3>v2,选项A、B错误, rrr选项C、D正确. 洛伦兹力与安培力的对比 1.洛伦兹力的特点 (1)洛伦兹力的方向总是垂直于运动电荷的速度方向和磁场方向共同确定的平面,所以洛伦兹力只改变速度方向,不改变速度大小,即洛伦兹力永不做功. (2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化. (3)用左手定则判断负电荷在磁场中运动所受的洛伦兹力时,要注意将四指指向电荷运动的反方向. 2.洛伦兹力与安培力的联系及区别 (1)安培力是洛伦兹力的宏观表现,二者是相同性质的力. (2)安培力可以做功,而洛伦兹力对运动电荷不做功. 考点二 带电粒子做圆周运动的分析思路 1.匀速圆周运动的规律 若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动. 2.圆心的确定 (1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图3甲所示,P为入射点,M为出射点). 图3 (2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点). 3.半径的确定 可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小. 4.运动时间的确定 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间 θθR 表示为t=T(或t=v). 2π例2 (2013·新课标Ⅰ·18)如图4,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于 R 直径ab的方向射入磁场区域,射入点与ab的距离为,已知粒子射出磁场与射入磁场时运2动方向间的夹角为60°,则粒子的速率为(不计重力)( ) 图4 qBRqBR3qBR2qBRA. B. C. D. 2mm2mm 解析 如图所示,粒子做圆周运动的圆心O2必在过入射点垂直于入射速度方向的直线EF上,由于粒子射入、射出磁场时运动方向间的夹角为60°,故圆弧ENM对应圆心角为60°,所以 R △EMO2为等边三角形.由于O1D=,所以∠EO1D=60°,△O1ME为等边三角形,所以可 2 mv2qBR 得到粒子做圆周运动的半径EO2=O1E=R,由qvB=,得v=,B正确. Rm答案 B 递进题组 3.[带电粒子在匀强磁场中的运动](2013·广东·21)如图5,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上,不计重力,下列说法正确的有( ) 图5 A.a、b均带正电 B.a在磁场中飞行的时间比b的短 C.a在磁场中飞行的路程比b的短 D.a在P上的落点与O点的距离比b的近 答案 AD
相关推荐: