2020-2021备战中考数学与相似有关的压轴题及答案解析
一、相似
1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点F(0, ),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
将点C(0,2)代入,得:-4a=2, 解得:a=- ,
则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2
(2)解:由题意知点D坐标为(0,-2), 设直线BD解析式为y=kx+b, 将B(4,0)、D(0,-2)代入,得:
,解得:
∴直线BD解析式为y= x-2,
,
∵QM⊥x轴,P(m,0),
∴Q(m,- m2+ m+2)、M(m, m-2), 则QM=- m2+ m+2-( m-2)=- m2+m+4, ∵F(0, )、D(0,-2), ∴DF= , ∵QM∥DF,
∴当- m2+m+4= 时,四边形DMQF是平行四边形, 解得:m=-1或m=3,
即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:
∵QM∥DF, ∴∠ODB=∠QMB, 分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ, 则
∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ, ∴△MBQ∽△BPQ,
,
∴ ,即
,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去, ∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′, 此时m=-1,点Q的坐标为(-1,0);
综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;
(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。由QM=DF,列出关于m的方程,解之可得;
(3)在△DOB和△MBQ中,由QM∥DF,可知∠ODB=∠QMB,因为∠MBQ=90°要使△DOB和△MBQ相似,则需要∠DOB=∠MBQ=90°或∠DOB=∠BQM=90°。
2.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。 (1)若点N在BC之间时,如图:
①求证:∠NPQ=∠PQN;
②请问 是否为定值?若是定值,求出该定值;若不是,请举反例说明; (2)当△PBN与△NCQ的面积相等时,求AP的值.
【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°, AB//CD,∴∠APM=∠DQM, ∵M是AD边的中点,∴AM=DM,
,∴△APM≌△DQM(AAS),∴PM=QM,
在△APM和△DQM中,
∵MN⊥PQ,∴MN是线段PQ的垂直平分线,∴PN=QN,∴∠NPQ=∠PQN ②
是定值
相关推荐: