参考答案
1.A 2.C 3.C 4.C 5.C 6.150°
7.∵四边形ABCD是正方形,AC是对角线,∴∠ACD=45°,∠BCD=∠DCE=90°.∴∠ACE=135°.∵EC=AC,∴∠E=22.5°.∴∠AFC=90°+22.5°=112.5°.
7
8.D 9.D 10.AC=BD或AB⊥BC 11.A 12.B 13.22.5 14.5-2 15. 2
DC=BC,??
16.(1)证明:∵四边形ABCD是正方形,∴DC=BC,∠B=∠ADC=90°.在△CDF和△CBE中,?∠CDF=∠B=90°,
??DF=BE,∴△CDF≌△CBE.∴CF=CE.
(2)∵△CDF≌△CBE,∴∠DCF=∠BCE.∴∠ECF=∠DCB=90°.∵CF=CE,∴∠CEF=45°.
17.证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.
(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.
18.(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.又∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.
(2)四边形BECD是菱形.理由:∵D为AB中点,∴AD=BD.又由(1)得CE=AD,∴BD=CE.又∵BD∥CE,∴四边形BECD是平行四边形.∵∠ACB=90°,D为AB中点,∴CD=BD.∴四边形BECD是菱形. (3)当∠A=45°时,四边形BECD是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为BA中点,∴CD⊥AB.∴∠CDB=90°.∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.
5
相关推荐: