数列题目精选精编
【典型例题】
(一)研究等差等比数列的有关性质 1. 研究通项的性质
n?1例题1. 已知数列{an}满足a1?1,an?3?an?1(n?2).
(1)求a2,a3;
3n?1an?2. (2)证明:
2解:(1)?a1?1,?a2?3?1?4,a3?3?4?13.
(2)证明:由已知an?an?1?3n?1,故an?(an?an?1)?(an?1?an?2)???(a2?a1)
?a1?3
n?1?3n?23n?13n?1???3?1?an?2, 所以证得2.
例题2. 数列?an?的前n项和记为Sn,a1?1,an?1?2Sn?1(n?1) (Ⅰ)求?an?的通项公式;
(Ⅱ)等差数列?bn?的各项为正,其前n项和为Tn,且T3?15,又a1?b1,a2?b2,a3?b3成等比数列,求Tn. 解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1(n?2), 两式相减得:an?1?an?2an,an?1?3an(n?2),
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3的等比数列 ∴an?3n?1
(Ⅱ)设?bn?的公差为d,由T3?15得,可得b1?b2?b3?15,可得b2?5
故可设b1?5?d,b3?5?d,又a1?1,a2?3,a3?9,
2由题意可得(5?d?1)(5?d?9)?(5?3),解得d1?2,d2?10
∵等差数列?bn?的各项为正,∴d?0 ∴d?2 ∴
2例题3. 已知数列?an?的前三项与数列?bn?的前三项对应相同,且a1?2a2?2a3?...
Tn?3n?n(n?1)?2?n2?2n2
?2n?1an?8n对任意的n?N*都成立,数列bn?1?bn是等差数列.
⑴求数列?an?与?bn?的通项公式; ?⑵是否存在k?N,使得bk?ak?(0,1),请说明理由.
n?12n?12an??a?2a?2a?...?2a?8n23n点拨:(1)1左边相当于是数列前n项和的形式,可以联想到已知Sn求an??的方法,当n?2时,Sn?Sn?1?an.
(2)把bk?ak看作一个函数,利用函数的思想方法来研究bk?ak的取值情况.
2n?1解:(1)已知a1?2a2?2a3???2an?8n(n?N*)①
2n?2n?2时,a1?2a2?2a3???2an?1?8(n?1)(n?N*)②
1
4?nn?1a?22a?8n①-②得,,求得n,
在①中令n?1,可得得a1?8?2,
4?na?2(n?N*). n所以
由题意b1?8,b2?4,b3?2,所以b2?b1??4,b3?b2??2, ∴数列{bn?1?bn}的公差为?2?(?4)?2, ∴bn?1?bn4?1??4?(n?1)?2?2n?6,
bn?b1?(b2?b1)?(b3?b2)???(bn?bn?1)
24?k(2)bk?ak?k?7k?14?2,
?(?4)?(?2)???(2n?8)?n2?7n?14(n?N*).
77f(k)?(k?)2??4?k242单调递增,且f(4)?1, 当k?4时,
所以k?4时,f(k)?k?7k?14?2又f(1)?f(2)?f(3)?0,
24?k?1,
所以,不存在k?N*,使得bk?ak?(0,1).
例题4. 设各项均为正数的数列{an}和{bn}满足:an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,且a1 = 1, b1 = 2 , a2 = 3 ,求通项an,bn 解: 依题意得:
2bn+1 = an+1 + an+2 ① a2n+1 = bnbn+1 ②
∵ an、bn为正数, 由②得an?1?bnbn?1,an?2?bn?1bn?2, bn?bn?2 ,
92 ,
代入①并同除以bn?1得: 2bn?1?∴ {bn}为等差数列 ∵ b1 = 2 , a2 = 3 ,
2a2?b1b2,则b2?92(n?1)2bn?2?(n?1)(?2)?(n?1),?bn?222 , ∴
n(n?1)an?bnbn?1?2∴当n≥2时,, n(n?1)an?2又a1 = 1,当n = 1时成立, ∴
2. 研究前n项和的性质 例题5.
n已知等比数列{an}的前n项和为Sn?a?2?b,且a1?3.
(1)求a、b的值及数列{an}的通项公式;
nbn?an,求数列{bn}的前n项和Tn. (2)设
解:(1)n?2时,an?Sn?Sn?1?2
n?1?a.而{an}为等比数列,得a1?21?1?a?a,
2
n?1a?3?2a?3a?3又1,得,从而n.又?a1?2a?b?3,?b??3.
(2)
bn?nn123n?T?(1?????)n?1an3?2, n32222n?1
11123n?1n11111nTn?(?2?3???n?1?nTn?(1??2???n?1?n)2322222) ,得232222, 11?(1?n)22?n]?4(1?1?n)Tn?[31?12n32n2n?12.
1例题6. 数列{an}是首项为1000,公比为10的等比数列,数列{bn}满足
1bk?(lga1?lga2???lgak)*k (k?N),
(1)求数列{bn}的前n项和的最大值;(2)求数列{|bn|}的前n项和Sn.
4?na?10n解:(1)由题意:,∴lgan?4?n,∴数列{lgan}是首项为3,公差为?1的等差数列,
?∴
lga1?lga2???lgak?3k?k(k?1)1n(n?1)7?nbn?[3n?]?2,∴n22
?bn?021?S?S?672. 由?bn?1?0,得6?n?7,∴数列{bn}的前n项和的最大值为
(2)由(1)当n?7时,bn?0,当n?7时,bn?0,
7?n3?2)n??1n2?13nSn??b1?b2???bn?(244 ∴当n?7时,当n?7时,
2Sn??b1?b2???b7?b8?b9???bn?2S7?(b1?b2???bn)?4n?4n?21
113
?1213?n?n(n?7)??4Sn???4?1n2?13n?21(n?7)?4?4∴.
例题7. 已知递增的等比数列{an}满足a2?a3?a4?28,且a3?2是a2,a4的等差中项. (1)求{an}的通项公式an;(2)若
bn?anlog1an,S?b?b???b求使S?n?2n?1?30成立的n的最小值.
n12nn2解:(1)设等比数列的公比为q(q>1),由
1a1q+a1q2+a1q3=28,a1q+a1q3=2(a1q2+2),得:a1=2,q=2或a1=32,q=2∴an=2·2
(n-1)
(舍)
=2
n
2(2) ∵,∴Sn=-(1·2+2·22+3·23+…+n·2n) ∴2Sn=-(1·22+2·23+…+n·2n+1),∴Sn=2+22+23+…+2n-n·2n+1=-(n-1)·2n+1-2, 若Sn+n ·2n+1>30成立,则2n+1>32,故n>4,∴n的最小值为5.
bn?anlog1an??n?2n 3
例题8. 已知数列{an}的前n项和为Sn,且?1,Sn,an?1成等差数列,
n?N*,a1?1. 函数f(x)?log3x. (I)求数列{an}的通项公式; b(II)设数列{bn?1n}满足
(n?3)[f(an)?2],记数列{bn}的前n项和为Tn
,试比较
T与52n?5n12?312的大小.
解:(I)??1,Sn,an?1成等差数列,?2Sn?an?1?1① 当n?2时,2Sn?1?an?1②.
?S?an?1?3.①-②得:2(Snn?1)?an?1?an,?3an?an?1,an 2当n=1时,由①得?2S2?3,?a1?2a1?a2?1, 又a1?1,?aa?3,1
?{an?1n}是以1为首项3为公比的等比数列,?an?3.
(II)∵f?x??log3x,
?f(an)?log3an?log33n?1?n?1, b11111n?(n?3)[f(a?n?1)(n?3)?2(n?1?n?3)n)?2](,
?T1122?14?13?15?14?16?15?11111n?(7???n?n?2?n?1?n?3)
?12(12?13?1n?2?1n?3)?512?2n?52(n?2)(n?3),
比较
T52n?5n与12?312的大小,只需比较2(n?2)(n?3)与312 的大小即可. 又2(n?2)(n?3)?312?2(n2?5n?6?156)?2(n2?5n?150)?2(n?15)(n?10)
∵n?N*,∴当1?n?9且n?N*时,2(n?2)(n?3)?312,即T52n?5n?12?312;
当n?10时,
2(n?2)(n?3)?312,即T52n?5n?12?312; 当n?10且n?N*时,
2(n?2)(n?3)?312,即T52n?5n?12?312.
3. 研究生成数列的性质
例题9. (I) 已知数列?cnnn?,其中cn?2?3,且数列?cn?1?pcn?为等比数列,求常数p;
(II) 设?an?、?bn?是公比不相等的两个等比数列,cn?an?bn,证明数列?cn?不是等比数列.
解:(Ⅰ)因为{cn+1-pcn}是等比数列,故有 (cn+1-pcn)2=( cn+2-pcn+1)(cn-pcn-1), 将cn=2n+3n代入上式,得 [2n+1+3n+
1-p(2n+3n)]2
=[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)], 即[(2-p)2n+(3-p)3n]2
=[(2-p)2n+1+(3-p)3n+1][ (2-p)2n-1+(3-p)3n-1],
1整理得6(2-p)(3-p)·2n·3n=0,
4
相关推荐: