第一范文网 - 专业文章范例文档资料分享平台

2016-2017学年高中数学第二章圆锥曲线与方程章末复习课新人教A版选修2-1

来源:用户分享 时间:2025/8/6 22:01:57 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(3)若直线l:y=kx+m与(2)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足AA2⊥BA2,求证:直线l过定点,并求出该定点的坐标.

解:(1)证明:设点P的坐标为(x,y), 令f(x)=|PF1|=(x+c)+y.

2

2

2

x2y2b2222

又点P在椭圆C上,故满足2+2=1,则y=b-2x.

abab22c222

代入f(x)得,f(x)=(x+c)+b-2x=2x+2cx+a,

aa2

2

a2a2

则其对称轴方程为x=-,由题意,知-<-a恒成立,

cc所以f(x)在区间[-a,a]上单调递增.

所以当且仅当椭圆C上的点P在椭圆的左、右顶点时|PF1|取得最小值与最大值. (2)解:由已知与(1)得:a+c=3,a-c=1,所以a=2,c=1. 所以b=a-c=3.所以椭圆C的标准方程为+=1.

43

2

2

2

x2y2

y=kx+m,??22

(3)解:如图所示,设A(x1,y1),B(x2,y2),联立?xy得

+=1??43

(3+4k)x+8mkx+4(m-3)=0,

2

2

2

?即3+4k-m>0,

?8mk则?x+x=-,3+4k4(m-3)?x·x=.?3+4k2

2

1

2

22

1

2

2

Δ=64mk-16(3+4k)(m-3)>0,

2222

又y1y2=(kx1+m)(kx2+m)=

3(m-4k)

kx1x2+mk(x1+x2)+m=. 2

3+4k2

2

22

因为椭圆的右顶点为A2(2,0),AA2⊥BA2, 所以(x1-2)(x2-2)+y1y2=0. 所以y1y2+x1x2-2(x1+x2)+4=0.

3(m-4k)4(m-3)16mk所以++222+4=0.

3+4k3+4k3+4k所以7m+16km+4k=0,

2k22

解得m1=-2k,m2=-,且均满足3+4k-m>0.

7当m1=-2k时,l的方程为y=k(x-2), 直线过定点(2,0),与已知矛盾.

2k?2??2?当m2=-时,l的方程为y=k?x-?,直线过定点?,0?. 7?7??7?

2

2

2

2

2

?2?所以直线l过定点,定点坐标为?,0?.

?7?

2016-2017学年高中数学第二章圆锥曲线与方程章末复习课新人教A版选修2-1.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c03by43ztu6072ie1yi364bptb11x4w00mg6_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top