4b?2c?8?0,则b??3,c?2,f'(x)?3x2?2bx?c?3x2?6x?2,且x1,x2是 函数f(x)?x3?bx2?cx?d的两个极值点,即x1,x2是方程3x2?6x?2?0的实根
x12?x22?(x1?x2)2?2x1x2?4?48? 333.B P?log112?log113?log114?log115?log11120,
1?log1111?log11120?log11121?2,即1?P?2
4.D 画出图象,把x轴下方的部分补足给上方就构成一个完整的矩形
uuuruuuruuuruuuruuuruuuruuururuurABACABAC5.B OP?OA??(uuur?uuur),AP??(uuur?uuur)??(e1?e2)
ABACABAC AP是?A的内角平分线
?(a?b)?(a?b)(?1)?a,(a?b)(a?b)?(a?b)f(a?b)??2??6.D
(a?b)?(a?b)2??b,(a?b)??27.D 令3方程9?x?2?x?2?t,(0?t?1),则原方程变为t2?4t?a?0,
?4?3?x?2?a?0有实根的充要条件是方程t2?4t?a?0在t?(0,1]上有实根
再令f(t)?t2?4t?a,其对称轴t?2?1,则方程t2?4t?a?0在t?(0,1]上有一实根,
?f(0)?0??a?0另一根在t?(0,1]以外,因而舍去,即?????3?a?0
f(1)?0?3?a?0??二、填空题
1.35 a1?1,a2?2,a3?a1?0,a3?1,a4?4,a5?1,a6?6,...,a9?1,a10?10 S10?1?2?1?4?1?6?1?8?1?10?35
2.(1,e),e 设切点(t,et),函数y?ex的导数y'?ex,切线的斜率
etk?y|x?t?e??t?1,k?e,切点(1,e)
t't3?2k?2k??1?223?22,1?) Qx?1?x,?0?k?2k??1,即?3.(1? 222?k2?2k?3?0??2
11
1?2k?2k??0?22?22?k?1???1?2???k?1? ?? 22,?1?22?k2?2k?3?0?k?R???24.f(2n)?5.f(n)?n?2 2111n?2] f(n)?(1?2)(1?2)???[1?223(n?1)2n?2111111?(1?)(1?)(1?)(1?)???(1?)(1?)2233n?1n?1
13243nn?2n?2??????...???22334n?1n?12n?2三、解答题 1.证明:Qa?ca?ca?b?b?ca?b?b?c ???a?bb?ca?bb?cb?ca?bb?ca?b??2?2??4,(a?b?c) a?bb?ca?bb?c ?2? ?a?ca?c114??4,???. a?bb?ca?bb?ca?c2.证明:假设质数序列是有限的,序列的最后一个也就是最大质数为P,全部序列
为2,3,5,7,11,13,17,19,...,P
再构造一个整数N?2?3?5?7?11?...?P?1,
显然N不能被2整除,N不能被3整除,……N不能被P整除, 即N不能被2,3,5,7,11,13,17,19,...,P中的任何一个整除,
所以N是个质数,而且是个大于P的质数,与最大质数为P矛盾, 即质数序列2,3,5,7,11,13,17,19,……是无限的
A?BA?BC?C?cos?2sin(?)cos(?)
3222626A?BC?A?B?C?A?B?C??2sin(?)?4sin(?)cos(?) ?2sin2264124123.证明:sinA?sinB?sinC?sin??2sin?4sin(
A?B?C??)412?4sin(?)?4sin4123???
12
A?B??cos?1??A?B2???C??? 当且仅当?cos(?)?1时等号成立,即?C?
326????A?B?C??A?B?C?cos(?)?1??3?412? 所以当且仅当A?B?C? 所以Tmax?3sin?3时,T?sin?3的最大值为4sin?3
?3?33 2(1?1)(2?1)?1,即原式成立 6k(k?1)(2k?1) 20 假设当n?k时,原式成立,即12?22?32?L?k2?
6k(k?1)(2k?1) 当n?k?1时,12?22?32?L?k2?(k?1)2??(k?1)2
64.证明:10 当n?1时,左边?1,右边?k(k?1)(2k?1)?6(k?1)2(k?1)(2k2?7k?6)??66
(k?1)(k?2)(2k?3)?6即原式成立
?12?22?32?L?n2?n(n?1)(2n?1),
6 13
相关推荐: