【复习导入】
1.教师:请同学们回忆一下上学期我们学过的比的知识,谁能说一说什么叫做比?举例说明什么叫做比的前项、后项、比值。
教师把学生举的例子板书出来,并注明各部分的名称。 2.求下面各比的比值。
学生独立求出各比的比值。
(1)教师:在求比值的时候你们发现了什么吗? 学生:有两个比的比值相等。 教师:哪两个比的比值相等呢? 学生回答后,教师把这两个比画上横线。
师:是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连接起来,写成一种新的式子,如:4.5∶2.7=10∶6。课件显示:“10∶6”和“4.5∶2.7”同时闪烁,接着两个比下面的比值隐去,再用等号连接起来。
(2)前面的两个比能用等号连接起来吗?为什么? 教师将课件后面的两个比隐去。 学生:不能,比值不相等。
教师小结:数学中规定,像这样的一些式子就叫做比例。 教师板书:比例。 【新课讲授】
1.师:今天这节课我们就来一起研究比例,你想研究哪些内容呢? 生:比的意义,学比例有什么用?比例有什么特点?
师:那好,我们就来研究比例的意义吧,到底什么是比例呢?根据下面的问题自学例1。 ①找出每面红旗长与宽的比。 ②求出每个比的比值。 ③哪几个比的比值相等?
3;60∶232.460?40=。两面国旗的长和宽的比值相等。板书:2.4∶1.6=60∶40,也可以写成。
21.6402.学生自学完以后,教师逐个问题指名学生回答,并板书在黑板上:2.4∶1.6=
师:像这样的式子就叫做比例。观察这些式子,你能说出什么叫做比例吗? 根据学生的回答,教师抓住关键点板书:两个比比值相等
教师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。 教师用课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
3.找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例? 过程要求:
学生猜想另外两面国旗长、宽的比值。 求出国旗长、宽的比值,并组成比例。 【课堂作业】
1.完成教材第40页“做一做”第1题。 学生独立完成,再在小组中相互交流、订正。 2.完成教材第40页“做一做”第2题。 组织学生议一议,加深对比例意义的理解。 答案:
1.(1)能组成比例,6∶10=9∶15。 (2)不能组成比例。
(3)能组成比例,12∶13=6∶4。 (4)能组成比例,0.6∶0.2=34∶14。 2.可以组成8个比例。即
3∶1.5=4∶2 3∶4=1.5∶2 2∶1.5=4∶3 2∶4=1.5∶3 1.5∶3=2∶4 1.5∶2=3∶4 4∶3=2∶1.5 4∶2=3∶1.5 【课堂小结】
通过这节课的学习,你知道“比”和“比例”这两个概念的联系与区别吗?学生各抒己见,之后师生共同归纳。
【课后作业】
1.教材第43页练习八第1、2题。 2.完成练习册中本课时的练习。 答案:
1.第1题:(从左往右)不能组成比例;能组成比例,30∶2=120∶8;不能组成比例;能组成比例,100∶5=200∶10。
第2题:(1)可以组成比例
4∶5=12∶15 4∶12=5∶15 15∶5=12∶4 15∶12=5∶4 5∶15=4∶ 125∶4=15∶12 12∶15=4∶5 12∶4=15∶5 (2)不能组成比例;(3)不能组成比例; (4)能组成比例
第2课时 比例的基本性质
【教学内容】
比例的基本性质(教材第41页内容)。 【教学目标】
1.使学生理解比例的基本性质。
2.提高学生观察、计算、发现、验证和总结的能力。
3.在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。 【重点难点】
应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。 【教学准备】 投影仪。
【复习导入】
1.教师提问:什么叫做比例?
2.应用比例的意义,判断哪两个比可以组成比例。 6∶3和8∶5 0.2∶2.5和4∶50
教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么? 【新课讲授】
1.教学比例各部分的名称。
引导学生自学教材第41页第1行、第2行的内容。 教师板书:2.4∶1.6=60∶40
指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书:
学生认一认,说一说比例中的外项和内项。
2.探究比例的基本性质。
教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。
教师板书:比例的基本性质。
组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。
学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。
43验证其他的比例有没有这个规律,举例说明,检验发现。如:∶0.5=1.2∶,两个外
5443项的积是×=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。
5439如果把比例改成分数形式呢?如:=,3×15=5×9。等号两边的分子和分母分别交
515叉相乘,所得的积相等。
教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。
3.应用比例的基本性质,判断哪两个比可以组成比例。 6∶3和8∶5 0.2∶2.5和4∶50 组织学生在小组中互相交流,然后指名汇报。
4.教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法? 学生讨论交流后,指名回答。
教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。
【课堂作业】
教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。 【课堂小结】
相关推荐: