?t>-3?.?t+3t-5?2??
2
5t≤-?,t2+5t-1?2??
4.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图象是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.
(1)求函数f(x)在(-∞,-2)上的解析式;
(2)在下面的直角坐标系中直接画出函数f(x)的草图;
(3)写出函数f(x)的值域.
解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,
所以y=-2(x-3)2+4, 即x>2时,f(x)=-2x2+12x-14. 又f(x)为偶函数,当x<-2,即-x>2时, f(x)=f(-x)=-2×(-x)2-12x-14, 即f(x)=-2x2-12x-14.
故函数f(x)在(-∞,-2)上的解析式为 f(x)=-2x2-12x-14. (2)函数f(x)的图象如图:
(3)由图象可知,函数f(x)的值域为(-∞,4].