第一范文网 - 专业文章范例文档资料分享平台

2019届湖北省襄阳市2018年中考数学试卷及答案解析(word版)

来源:用户分享 时间:2025/8/8 3:24:48 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

式求得m的值,从而得出答案;

(2)①由(1)知BD=AC、BD∥OC,根据AB=AD=

证四边形ABPQ是平

行四边形得AQ=BP,即2t=4﹣3t,解之即可;②分点N在AB上和点N在AD上两种情况分别求解.

【解答】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=2, ∴点A(2,0)、点B(0,3),

将点A(2,0)代入抛物线解析式,得:﹣×4+4m﹣3m=0, 解得:m=3,

所以抛物线解析式为y=﹣x2+6x﹣9, ∵y=﹣x2+6x﹣9=﹣(x﹣4)2+3, ∴点D(4,3),对称轴为x=4, ∴点C坐标为(6,0);

(2)如图1,

由(1)知BD=AC=4, 根据0≤3t≤4,得:0≤t≤, ①∵B(0,3)、D(4,3), ∴BD∥OC, ∴∠CAD=∠ADB, ∵∠DPE=∠CAD, ∴∠DPE=∠ADB, ∵AB=∴AB=AD,

=

、AD=

=

∴∠ABD=∠ADB, ∴∠DPE=∠ABD, ∴PQ∥AB,

∴四边形ABPQ是平行四边形, ∴AQ=BP,即2t=4﹣3t, 解得:t=,

即当∠DPE=∠CAD时,t=秒;

②(Ⅰ)当点N在AB上时,0≤2t≤2,即0≤t≤1,

连接NE,延长PN交x轴于点F,延长ME交x轴于点H,

∵PN⊥BD、EM⊥BD,BD∥OC,PN=EM,

∴OF=BP=2t,PF=OB=3,NE=FH、NF=EH,NE∥FQ, ∴FQ=OC﹣OF﹣QC=6﹣5t, ∵点N在直线y=﹣x+3上, ∴点N的坐标为(2t,﹣3t+3), ∴PN=PF﹣NF=3﹣(﹣3t+3)=3t, ∵NE∥FQ, ∴△PNE∽△PFQ, ∴

=

?FQ=

×(6﹣5t)=6t﹣5t2,

∴FH=NE=

∵A(2,0)、D(4,3), ∴直线AD解析式为y=x﹣3, ∵点E在直线y=x﹣3上,

∴点E的坐标为(4﹣2t,﹣3t+3), ∵OH=OF+FH, ∴4﹣2t=2t+6t﹣5t2, 解得:t=1+

>1(舍)或t=1﹣

(Ⅱ)当点N在AD上时,2<2t≤4,即1<t≤, ∵PN=EM,

∴点E、N重合,此时PQ⊥BD, ∴BP=OQ, ∴2t=6﹣3t, 解得:t=,

综上所述,当PN=EM时,t=(1﹣

)秒或t=秒.

【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数的解析式、平行四边形的判定与性质、相似三角形的判定与性质等知识点.

2019届湖北省襄阳市2018年中考数学试卷及答案解析(word版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c07wsw6uh1i3sk4u09qt56trx01723y00exv_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top