又由 知x?0x?0?limf(x)?lim1?1, limf(x)?lim(?1)??1???x?0x?0x?0
limf(x)不存在,从而f(x)在x?0处间断.综上所述,函数f(x)在(??,0),(0,??)内
连续,在x?0处间断.图形如下:
图1-4
1?x2nf(x)?limx?0,n??1?x2n(4)当|x|=1时,
1?x2nf(x)?limx?x,n??1?x2n当|x|<1时,
1?x2nf(x)?limn??1?x2n当|x|>1时,
?1??1?2?x?lim?x?n?x??xn???1??1?2??x?
n?x,x?1,?f(x)??0,x?1,??x,x?1. ?即
由初等函数的连续性知f(x)在(-∞,-1),(-1,1),(1,+∞)内均连续,又由
x??1?limf(x)?lim?(?x)?1, lim?f(x)?lim?x??1x??1x??1x??1
知x??1limf(x)不存在,从而f(x)在x??1处不连续.
x?1?又由 知
limf(x)?lim(?x)??1, limf(x)?limx?1???x?1x?1x?1
limf(x)x?1不存在,从而f(x)在x?1处不连续.
综上所述,f(x)在(-∞,-1),(-1,1),(1,+∞)内连续,在x??1处间断.
图形如下:
图1-5
x2?1(x?1)(x?1)(1)Qlim2?lim??2x?1x?3x?2x?1(x?1)(x?2)33. 解:
精选
x2?1lim2??x?2x?3x?2
?x?1是函数的可去间断点.因为函数在x=1处无定义,若补充定义f(1)??2,则函
数在x=1处连续;x=2是无穷间断点.
(2)Qlimxx?1, lim?0πx?0tanxx?kπ?tanx2x??x?kπtanx当k?0时,. ππ?x?0,x?kπ?,k?0,?1,?2,Lf(kπ?)?022为可去间断点,分别补充定义f(0)=1,,
πx??kπ2可使函数在x=0,及处连续.(k?0,?1,?2,L);
x?kπ,k?0,k??1,?2,L为无穷间断点
lim(3)∵当x?0时,
∴x=0是函数的振荡间断点.(第二类间断点). (4)
cos1x2呈振荡无极限,
Qlimy?lim(3?x)?2.??x?1x?1
∴x=1是函数的跳跃间断点.(第一类间断点.)
x?1?x?1limy?lim(x?1)?0?3(1?x)2?31?x?131?x?1(1)Qlimf(x)?lim3?lim?x?0x?01?x?1x?02 1?x?134. 解:
3f(0)?,2可使函数在x=0处连续. ∴补充定义
tan2x2x(2)Qlimf(x)?lim?lim?2.x?0x?0x?0xx
∴补充定义f(0)?2,可使函数在x=0处连续.
(3)Qlimsinxsin1?0x?0x
∴补充定义f(0)?0,可使函数在x=0处连续.
1x(4)Qlimf(x)?lim(1?x)?ex?0x?0
∴补充定义f(0)?e,可使函数在x=0处连续.
limf(x)?lim(a?x)?a,x?0?35. 解:(1)Qf(x)在(??,0),(0,??)上显然连续,而x?0?
x?0xlimf(x)?lime?1,??x?0 且f(0)?a,
∴当f?(0)?f?(0)?f(0),即a?1时,f(x)在x?0处连续,所以,当a?1时,f(x)在
(??,??)上连续.
ππ(??,),(,??)22(2)Qf(x)在内显然连续.而
精选
lim?f(x)?lim?(sinx?b)?1?b,x?π2x?π2lim?f(x)?lim?(ax?1)?x?π2x?π2πa?1,2πf()?1?b,2
πππ1?b?a?1b?ax?22时,f(x)在2处连续,因而f(x)在(??,??)上连续. ∴当,即
xf(x)?x?2?1,则f(x)在[0,1]上连续,且f(0)??1?0,f(1)?1?0,由零点36. 证:令
???2?1?0 ???(0,1)f(?)?0定理,使即x即方程x?2?1有一个小于1的正根.
37.证:令f(x)?x?asinx?b,则f(x)在[0,a?b]上连续,
且 f(0)??b?0,f(a?b)?a(1?sinx)?0, 若f(a?b)?0,则a?b就是方程x?asinx?b的根. 若f(a?b)?0,则由零点定理得.
???(0,a?b),使f(?)?0即??asin??b?0即??asin??b,即?是方程
x?asinx?b的根,综上所述,方程x?asinx?b至少有一个不超过a?b的正根.
38. 证:令F(x)?f(x)?f(x?a),由f(x)在[0,2a]上连续知,F(x)在[0,a]上连续,且
F(0)?f(0)?f(a),F(a)?f(a)?f(2a)?f(a)?f(0)
若f(0)?f(a)?f(2a),则x?0,x?a都是方程f(x)?f(x?a)的根,
若f(0)?f(a),则F(0)F(a)?0,由零点定理知,至少???(0,a),使F(?)?0,
即f(?)?f(??a),即?是方程f(x)?f(x?a)的根,
综上所述,方程f(x)?f(x?a)在[0,a]内至少有一根.
39.证:令F(x)?f(x)?x,则F(x)在[0,1]上连续,且F(0)?f(0)?0,F(1)?f(1)?1?0, 若f(0)?0,则??0,若f(1)?1,则??1,若f(0)?0,f(1)?1,则F(0)?F(1)?0,由零点定理,至少存在一点??(0,1),使F(?)?0即f(?)??.
综上所述,至少存在一点??[0,1],使f(?)??.
f(x1)?f(x2)?L?f(xn)n. .
40证:已知f(x)在[x1,xn]上连续,则f(x)在[x1,xn]上有最大值M和最小值m,于是 f(?)?f(x1)?f(x2)?L?f(xn)?Mn,
??[x1,xn],使
由介值定理知,必有
m?f(?)?
f(x1)?f(x2)?L?f(xn)n.
精选
相关推荐: