£¨1£©¶ÁÌâ·ÖÎö·¨£º¶àÓÃÓÚ¡°ºÍ£¬²î£¬±¶£¬·ÖÎÊÌ⡱¡£
×Ðϸ¶ÁÌ⣬ÕÒ³ö±íʾÏàµÈ¹ØÏµµÄ¹Ø¼ü×Ö£¬ÀýÈ磺¡°´ó£¬Ð¡£¬¶à£¬ÉÙ£¬ÊÇ£¬¹²£¬ºÏ£¬Îª£¬Íê³É£¬Ôö¼Ó£¬¼õÉÙ£¬ÅäÌ׵ȡ±£¬ÀûÓÃÕâЩ¹Ø¼ü×ÖÁгöÎÄ×ÖµÈʽ£¬²¢ÇÒ¾ÝÌâÒâÉè³öδ֪Êý£¬×îºóÀûÓÃÌâÄ¿ÖеÄÁ¿ÓëÁ¿µÄ¹ØÏµÌîÈë´úÊýʽ£¬µÃµ½·½³Ì¡£ £¨2£©»Í¼·ÖÎö·¨£º¶àÓÃÓÚ¡°ÐгÌÎÊÌ⡱
ÀûÓÃͼÐηÖÎöÊýѧÎÊÌâÊÇÊýÐνáºÏ˼ÏëÔÚÊýѧÖеÄÌåÏÖ£¬×Ðϸ¶ÁÌ⣬ÒÀÕÕÌâÒ⻳öÓйØÍ¼ÐΣ¬Ê¹Í¼Ðθ÷²¿·Ö¾ßÓÐÌØ¶¨µÄº¬Ò壬ͨ¹ýͼÐÎÕÒÏàµÈ¹ØÏµÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬´Ó¶øÈ¡µÃ²¼Áз½³ÌµÄÒÀ¾Ý£¬×îºóÀûÓÃÁ¿ÓëÁ¿Ö®¼äµÄ¹ØÏµ£¨¿É°Ñδ֪Êý¿´×öÒÑÖªÁ¿£©£¬ÌîÈëÓйصĴúÊýʽÊÇ»ñµÃ·½³ÌµÄ»ù´¡¡£
11¡¢Áз½³Ì½âÓ¦ÓÃÌâµÄ³£Óù«Ê½£º £¨1£©ÐгÌÎÊÌ⣺¾àÀë=ËÙ¶È¡¤Ê±¼ä £¨2£©¹¤³ÌÎÊÌ⣺¹¤×÷Á¿=¹¤Ð§¡¤¹¤Ê± £¨3£©±ÈÂÊÎÊÌ⣺²¿·Ö=È«Ì塤±ÈÂÊ
£¨4£©Ë³ÄæÁ÷ÎÊÌ⣺˳Á÷ËÙ¶È=¾²Ë®ËÙ¶È+Ë®Á÷ËÙ¶È£¬ÄæÁ÷ËÙ¶È=¾²Ë®ËÙ¶È-Ë®Á÷ËÙ¶È£» £¨5£©ÉÌÆ·¼Û¸ñÎÊÌ⣺ÊÛ¼Û=¶¨¼Û¡¤ÕÛ£»ÀûÈó=ÊÛ¼Û-³É±¾£¬ £»
£¨6£©Öܳ¤¡¢Ãæ»ý¡¢Ìå»ýÎÊÌ⣺CÔ²=2¦ÐR£¬SÔ²=¦ÐR£¬C³¤·½ÐÎ=2(a+b)£¬S³¤·½ÐÎ=ab£¬ C
Õý·½ÐÎ
2
=4a£¬
SÕý·½ÐÎ=a2£¬S»·ÐÎ=¦Ð(R2-r2),V³¤·½Ìå=abc £¬VÕý·½Ìå=a3£¬VÔ²Öù=¦ÐR2h £¬VÔ²×¶= ¦ÐR2h¡£
£¨³õÒ»ÏÂѧÆÚ£©
¶þÔªÒ»´Î·½³Ì×é
1¡¢¶þÔªÒ»´Î·½³Ì£ºº¬ÓÐÁ½¸öδ֪Êý£¬²¢ÇÒº¬Î´ÖªÊýÏîµÄ´ÎÊýÊÇ1£¬ÕâÑùµÄ·½³ÌÊǶþÔªÒ»´Î·½³Ì¡£
£¨×¢Ò⣺һ°ã˵¶þÔªÒ»´Î·½³ÌÓÐÎÞÊý¸ö½â£©
2¡¢¶þÔªÒ»´Î·½³Ì×飺Á½¸ö¶þÔªÒ»´Î·½³ÌÁªÁ¢ÔÚÒ»ÆðÊǶþÔªÒ»´Î·½³Ì×é¡£
3¡¢¶þÔªÒ»´Î·½³Ì×éµÄ½â£ºÊ¹¶þÔªÒ»´Î·½³Ì×éµÄÁ½¸ö·½³Ì£¬×óÓÒÁ½±ß¶¼ÏàµÈµÄÁ½¸öδ֪ÊýµÄÖµ£¬½Ð¶þÔªÒ»´Î·½³Ì×éµÄ½â¡£×¢Ò⣺һ°ã˵¶þÔªÒ»´Î·½³Ì×éÖ»ÓÐΨһ½â£¨¼´¹«¹²½â£©¡£ 4¡¢¶þÔªÒ»´Î·½³Ì×éµÄ½â·¨£º £¨1£©´úÈëÏûÔª·¨ £¨2£©¼Ó¼õÏûÔª·¨
£¨3£©×¢Ò⣺ÅжÏÈçºÎ½â¼òµ¥Êǹؼü¡£ 5¡¢¶þÔªÒ»´Î·½³Ì×éµÄÓ¦Óãº
£¨1£©¶ÔÓÚÒ»¸öÓ¦ÓÃÌâÉè³öµÄδ֪ÊýÔ½¶à£¬Áз½³Ì×é¿ÉÄÜÈÝÒ×һЩ£¬µ«½â·½³Ì×é¿ÉÄܱȽÏÂé·³£¬·´Ö®Ôò¡°ÄÑÁÐÒ׽⡱¡£
£¨2£©¶ÔÓÚ·½³Ì×飬Èô·½³Ì¸öÊýÓëδ֪Êý¸öÊýÏàµÈʱ£¬Ò»°ã¿ÉÇó³öδ֪ÊýµÄÖµ¡£ £¨3£©¶ÔÓÚ·½³Ì×飬Èô·½³Ì¸öÊý±Èδ֪Êý¸öÊýÉÙÒ»¸öʱ£¬Ò»°ãÇó²»³öδ֪ÊýµÄÖµ£¬µ«×Ü¿ÉÒÔÇó³öÈκÎÁ½¸öδ֪ÊýµÄ¹ØÏµ¡£
Ò»ÔªÒ»´Î²»µÈʽ£¨×飩
1¡¢²»µÈʽ£ºÓò»µÈºÅ¡°£¾¡±¡°£¼¡±¡°¡Ü¡±¡°¡Ý¡±¡°¡Ù¡±£¬°ÑÁ½¸ö´úÊýʽÁ¬½ÓÆðÀ´µÄʽ×ӽв»µÈʽ¡£ 2¡¢²»µÈʽµÄ»ù±¾ÐÔÖÊ£º
²»µÈʽµÄ»ù±¾ÐÔÖÊ1£º²»µÈʽÁ½±ß¶¼¼ÓÉÏ£¨»ò¼õÈ¥£©Í¬Ò»¸öÊý»òͬһ¸öÕûʽ£¬²»µÈºÅµÄ·½Ïò²»±ä¡£
²»µÈʽµÄ»ù±¾ÐÔÖÊ2£º²»µÈʽÁ½±ß¶¼³ËÒÔ£¨»ò³ýÒÔ£©Í¬Ò»¸öÕýÊý£¬²»µÈºÅµÄ·½Ïò²»±ä¡£ ²»µÈʽµÄ»ù±¾ÐÔÖÊ3£º²»µÈʽÁ½±ß¶¼³ËÒÔ£¨»ò³ýÒÔ£©Í¬Ò»¸ö¸ºÊý£¬²»µÈºÅµÄ·½ÏòÒª¸Ä±ä¡£ 3¡¢²»µÈʽµÄ½â¼¯£º
ÄÜʹ²»µÈʽ³ÉÁ¢µÄδ֪ÊýµÄÖµ£¬½Ð×öÕâ¸ö²»µÈʽµÄ½â£»²»µÈʽËùÓнâµÄ¼¯ºÏ£¬½Ð×öÕâ¸ö²»µÈʽµÄ½â¼¯¡£ 4¡¢Ò»ÔªÒ»´Î²»µÈʽ£º
Ö»º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ´ÎÊýÊÇ1£¬ÏµÊý²»µÈÓÚÁãµÄ²»µÈʽ£¬½Ð×öÒ»ÔªÒ»´Î²»µÈʽ£»ËüµÄ±ê×¼ÐÎʽÊÇax+b£¾0»òax+b£¼0 £¬(a¡Ù0)¡£ 5¡¢Ò»ÔªÒ»´Î²»µÈʽµÄ½â·¨£º
Ò»ÔªÒ»´Î²»µÈʽµÄ½â·¨Óë½âÒ»ÔªÒ»´Î·½³ÌµÄ½â·¨ÀàËÆ£¬µ«Ò»¶¨Òª×¢Òâ²»µÈʽÐÔÖÊ3µÄÓ¦Óá£
£¨×¢Ò⣺ÔÚÊýÖáÉϱíʾ²»µÈʽµÄ½â¼¯Ê±£¬Òª×¢Òâ¿ÕȦºÍʵµã£© 6¡¢Ò»ÔªÒ»´Î²»µÈʽ×飺
º¬ÓÐÏàͬδ֪ÊýµÄ¼¸¸öÒ»ÔªÒ»´Î²»µÈʽËù×é³ÉµÄ²»µÈʽ×飬½Ð×öÒ»ÔªÒ»´Î²»µÈʽ×é¡£ ×¢Ò⣺ab£¾0 ?
ab£¼0 ?
a?a?0?a?0»ò?£» ?0? ?b?b?0?b?0a?a?0?a?0?a?m»ò?£» ab=0 ? a=0»òb=0£» ?? a=m ¡£ ?0 ? ?b?b?0?b?0?a?m7¡¢Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â¼¯Óë½â·¨£º
ËùÓÐÕâЩһԪһ´Î²»µÈʽ½â¼¯µÄ¹«¹²²¿·Ö£¬½Ð×öÕâ¸öÒ»ÔªÒ»´Î²»µÈʽ×éµÄ½â¼¯£»½âÒ»ÔªÒ»´Î²»µÈʽʱ£¬Ó¦·Ö±ðÇó³öÕâ¸ö²»µÈʽ×éÖи÷¸ö²»µÈʽµÄ½â¼¯£¬ÔÙÀûÓÃÊýÖáÈ·¶¨Õâ¸ö²»µÈʽ×éµÄ½â¼¯¡£
8¡¢Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â¼¯µÄËÄÖÖÀàÐÍ£ºÉè a£¾b
?x?a?x?a?x?b?x?b ???²»µÈʽ×éµÄ½â¼¯ÊÇx?a?²»µÈʽµÄ×é½â¼¯ÊÇx?b>ba>ba ?x?a?x?b ??²»µÈʽ×éµÄ½â¼¯ÊÇa?x?b>?x?a?x?b ??²»µÈʽ×é½â¼¯Êǿռ¯ba>ba 9¡¢¼¸¸öÖØÒªµÄÅжϣº x?y?0?x?y?0??x¡¢yÊÇÕýÊý£¬?x¡¢yÊǸºÊý, ?xy?0?xy?0??x?y?0?x?y?0??x¡¢yÒìºÅÇÒÕýÊý¾ø¶ÔÖµ´ó£¬?x¡¢yÒìºÅÇÒ¸ºÊý¾ø¶ÔÖµ´ó. ?xy?0?xy?0??
ÕûʽµÄ³Ë³ý
1¡¢Í¬µ×ÊýÃݵij˷¨£º
a¡¤a=a £¬µ×Êý²»±ä£¬Ö¸ÊýÏà¼Ó¡£ 2¡¢Ãݵij˷½Óë»ýµÄ³Ë·½£º
(a)=a £¬µ×Êý²»±ä£¬Ö¸ÊýÏà³Ë£»(ab)=ab £¬»ýµÄ³Ë·½µÈÓÚ¸÷Òòʽ³Ë·½µÄ»ý¡£ 3¡¢µ¥ÏîʽµÄ³Ë·¨£º
ϵÊýÏà³Ë£¬Ïàͬ×ÖĸÏà³Ë£¬Ö»ÔÚÒ»¸öÒòʽÖк¬ÓеÄ×Öĸ£¬Á¬Í¬Ö¸ÊýдÔÚ»ýÀï¡£ 4¡¢µ¥ÏîʽÓë¶àÏîʽµÄ³Ë·¨£º
m(a+b+c)=ma+mb+mc £¬Óõ¥Ïîʽȥ³Ë¶àÏîʽµÄÿһÏÔÙ°ÑËùµÃµÄ»ýÏà¼Ó¡£ 5¡¢¶àÏîʽµÄ³Ë·¨£º
(a+b)¡¤(c+d)=ac+ad+bc+bd £¬ÏÈÓöàÏîʽµÄÿһÏîÈ¥³ËÁíÒ»¸ö¶àÏîʽµÄÿһÏÔÙ°ÑËùµÃµÄ»ýÏà¼Ó¡£ 6¡¢³Ë·¨¹«Ê½£º
£¨1£©Æ½·½²î¹«Ê½£º(a+b)(a-b)= a-b£¬Á½¸öÊýµÄºÍÓëÕâÁ½¸öÊýµÄ²îµÄ»ýµÈÓÚÕâÁ½¸öÊýµÄƽ·½²î¡£
£¨2£©Íêȫƽ·½¹«Ê½£º
¢Ù (a+b)=a+2ab+b, Á½¸öÊýºÍµÄƽ·½£¬µÈÓÚËüÃÇµÄÆ½·½ºÍ£¬¼ÓÉÏËüÃǵĻýµÄ2±¶¡£
2
2
2
2
2
mn
mn
n
nn
m
n
m+n
¢Ú (a-b)=a-2ab+b , Á½¸öÊý²îµÄƽ·½£¬µÈÓÚËüÃÇµÄÆ½·½ºÍ£¬¼õÈ¥ËüÃǵĻýµÄ2±¶¡£ ¢Û (a+b-c)=a+b+c+2ab-2ac-2bc 7¡¢Åä·½£º
?p?£¨1£©Èô¶þ´ÎÈýÏîʽx+px+qÊÇÍêȫƽ·½Ê½,ÔòÓйØÏµÊ½£º???q¡£
?2?2
2
2
2
2
222
2£¨2£©¶þ´ÎÈýÏîʽax+bx+c¾¹ýÅä·½£¬×Ü¿ÉÒÔ±äΪa(x-h)+kµÄÐÎʽ£¬ÀûÓÃa(x-h)+k ¢Ù¿ÉÒÔÅжÏax+bx+cÖµµÄ·ûºÅ¡£
¢Úµ±x=hʱ£¬¿ÉÇó³öax+bx+cµÄ×î´ó£¨»ò×îС£©Öµk¡£ 1??£¨3£©×¢Ò⣺x?2??x???2¡£
x?x?22
2
222
128¡¢Í¬µ×ÊýÃݵijý·¨£ºa¡Âa=a £¬µ×Êý²»±ä£¬Ö¸ÊýÏà¼õ¡£ 9¡¢ÁãÖ¸ÊýÓ븺ָÊý¹«Ê½: £¨1£©a=1 (a¡Ù0)£» a=
0
-n
mnm-n
1an,(a¡Ù0). ×¢Ò⣺0£¬0ÎÞÒâÒå¡£
-5
0-2
£¨2£©ÓÐÁ˸ºÖ¸Êý£¬¿ÉÓÿÆÑ§¼ÇÊý·¨¼Ç¼СÓÚ1µÄÊý£¬ÀýÈ磺0.0000201=2.01¡Á10 ¡£ 10¡¢µ¥Ïîʽ³ýÒÔµ¥Ïîʽ:
ϵÊýÏà³ý£¬Ïàͬ×ÖĸÏà³ý£¬Ö»ÔÚ±»³ýʽÖк¬ÓеÄ×Öĸ£¬Á¬Í¬ËüµÄÖ¸Êý×÷ΪÉ̵ÄÒ»¸öÒòʽ¡£ 11¡¢¶àÏîʽ³ýÒÔµ¥Ïîʽ£ºÏÈÓöàÏîʽµÄÿһÏî³ýÒÔµ¥Ïîʽ£¬ÔÙ°ÑËùµÃµÄÉÌÏà¼Ó¡£ 12¡¢¶àÏîʽ³ýÒÔ¶àÏîʽ£º
ÏÈÒòʽ·Ö½âºóÔ¼·Ö»òÊúʽÏà³ý£»×¢Ò⣺±»³ýʽ-Óàʽ=³ýʽ¡¤ÉÌʽ¡£ 13¡¢Õûʽ»ìºÏÔËË㣺
Ïȳ˷½£¬ºó³Ë³ý£¬×îºó¼Ó¼õ£¬ÓÐÀ¨ºÅÏÈËãÀ¨ºÅÄÚ¡£
Ï߶Ρ¢½Ç¡¢ÏཻÏßÓëÆ½ÐÐÏß
¼¸ºÎA¼¶¸ÅÄ£¨ÒªÇóÉî¿ÌÀí½â¡¢ÊìÁ·ÔËÓá¢Ö÷ÒªÓÃÓÚ¼¸ºÎÖ¤Ã÷£© 1¡¢½Çƽ·ÖÏߵ͍Ò壺 Ò»ÌõÉäÏß°ÑÒ»¸ö½Ç·Ö³ÉÁ½¸öÏàµÈµÄ²¿·Ö£¬ÕâÌõÉäÏß½Ð½ÇµÄÆ½·ÖÏß.£¨Èçͼ£© O AC¼¸ºÎ±í´ïʽ¾ÙÀý£º (1) ¡ßOCƽ·Ö¡ÏAOB ¡à¡ÏAOC=¡ÏBOC (2) ¡ß¡ÏAOC=¡ÏBOC B ¡àOCÊÇ¡ÏAOBµÄƽ·ÖÏß ¼¸ºÎ±í´ïʽ¾ÙÀý£º (1) ¡ßCÊÇABÖе㠡à AC = BC 2¡¢Ïß¶ÎÖеãµÄ¶¨Ò壺 µãC°ÑÏß¶ÎAB·Ö³ÉÁ½ÌõÏàµÈµÄÏ߶Σ¬µãC½ÐÏß¶ÎÖеã.(Èçͼ) ACB (2) ¡ßAC = BC
Ïà¹ØÍÆ¼ö£º