22、(1)由于点B1(1,y1),B2(2,y2),…,Bn(n,yn)(n?N)在直线y??1x?1上 211n?1 因此yn?1?yn?,所以{yn}是等差数列 22x?xn?1(2)由已知有n?n得xn?xn?1?2n 同理 xn?1?xn?2?2(n?1)
2则y?∴xn?2?xn?2
∴x2n?1?x1?(n?1)?2?2n?a?2 x2n?x2?(n?1)?2?2n?a ∴S2n?1?(1?a)?2n?1 2a(1?a)(n?1)(2n?1)a?1?a2(n?1)(2n?1)(n?1)(2n?1) ?()??2228(3)由(2)得S2n?a?(n?1),则S2n?1S2n?nnn81611Tn?????16?(?)
2k?2k?1(k?1)(2k?1)k?1(2k?2)(2k?1)k?1(2k?1)∴Tn?16((?)?(?)?L?(113411561511?))
(2k?1)2k?211111?)?2(??L?))
(2k?1)2k?2462k?2∴Tn?16((?)?(?)?L?(∴Tn?16(由于
1134161111??L?) n?2n?32n?22n?2?2n?23n?4111 而(n?2)(2n?2)? ???222n?22n?2(n?2)(2n?2)21141,从而 ???n?22n?23n?4(n?2)(2n?2)3n?4则114114…… ????n?32n?13n?42n?2n?23n?41114(n?1)以上n?1个不等式相加得:2( ??L)?n?2n?32n?23n?41112(n?1)??L?即,从而 n?2n?32n?23n?42(n?1)18nTn?16(?)?
3n?423n?4同理:
相关推荐: