15.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是 .
16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为的边长为
,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD时,正方形EFGH的面积的所有可能值是 (不包括5).
三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).
第5页(共31页)
18.(6分)解不等式≤2,并把它的解表示在数轴上.
19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.
20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)
(1)求扇形统计图中交通监督所在扇形的圆心角度数;
(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)
(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
的长.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求
22.(10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓
第6页(共31页)
库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:
乙仓库
甲仓库
路程(千米)
B果园
A果园 20
15 20
25
设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,
(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)
B果园
A果园
x
运量(吨)甲仓库
甲仓库
运费(元)
110﹣x
乙仓库
2×15x
乙仓库
2×25(110﹣x)
(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?
23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且延长DM交AB于点F.
=
=m,连结AE,过点D作DM⊥AE,垂足为点M,
(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=
,求证:AE=DF;
的值.
(2)如图2,若m=,求
24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2
第7页(共31页)
,△
ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;
(2)若点A和点D在同一个反比例函数的图象上,求OB的长;
(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.
第8页(共31页)
相关推荐: