(2)因为采用1期付款,其利润为200元,采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元,η表示经销一件该商品的利润. 所以可能取值为200元,250元,300元. 根据表格知识得出:
P(η=200)=P(ξ=1)=0.4,
P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,
P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2. 故η的分布列为: η P
E(η)=200×0.4+250×0.4+300×0.2=240(元). 点睛:求解离散型随机变量的数学期望的一般步骤为:
第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;
第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;
第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布则此随机变量的期望可直接利用这种典型分布的期望公式(
)求得.
),
200 0.4 250 0.4 300 0.2 22. 现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢. (1)求这4个人中恰好有2人去参加甲项目联欢的概率;
(2)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率; (3)用
分别表示这4个人中去参加甲、乙项目联欢的人数,记
.
,求随机变量的分
布列与数学期望
【答案】(1) ; (2) ;(3).
【解析】分析:(1)先确定参加甲游戏的概率以及参加乙游戏的概率,再根据独立重复试验概率公式求结果,(2)先确定满足条件得两个互斥事件,再根据互斥事件概率加法求结果,(3)先确定随机变量取法,再根据互斥事件概率加法求对应概率,最后根据数学期望公式求结果. 详解:
解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有i人去参加甲游戏”为事件
(i=0,1,2,3,4),则
(Ⅰ)这4个人中恰有2人去参加甲游戏的概率
(Ⅱ)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则
,
由于
与
互斥,故
所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为 (Ⅲ)ξ的所有可能取值为0,2,4.由于
,
。
所以ξ的分布列是 ξ P
随机变量ξ的数学期望
点睛:求解离散型随机变量的数学期望的一般步骤为:
第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;
.
0 2 4 与
互斥,
与
互斥,故
第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;
第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;
第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布则此随机变量的期望可直接利用这种典型分布的期望公式(
)求得.
),
相关推荐: