第一范文网 - 专业文章范例文档资料分享平台

复变函数与积分变换试题及答案20课件

来源:用户分享 时间:2025/7/31 3:26:23 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

9.(6分)求将上半平面 Im(z)?0 保形映照成单位圆 |w|?1 的分式线性函数。

10.(5×2)(1)己知 F[f(t)]?F(?),求函数f(2t?5)的傅里叶变换;

(2)求函数F(?)?

2的傅里叶逆变换。

(3?i?)(5?i?)

5

11.(5×2)(1)求函数f(t)?e2tu(t?2)的拉普拉斯变换; (2)求拉普拉斯逆变换L-1

[ss2?4s?5]。

12.(6分)解微积分方程:y'(t)??t0y(?)d??1,

6

y(0)?0。

答 案

1.(5分)请依次写出z的代数、几何、三角、指数表达式和z的3次方根。

z?x?iy?rei??r(cos??isin?)

z?rei??2k?3

z:r,Argz

2. (6分)请指出指数函数w?ez、对数函数w?lnz、正切函数

w?tanz的解析域,并说明它们的解析域是哪类点集。

指数函数w?ez、对数函数w?lnz、正切函数w?tanz的解析域 分别为:整个复平面,无界开区域;除去原点及负半实轴,无界开区域,;除去点z?k???2,无界开区域。

3.(9分)讨论函数f(z)?x2?iy2的可导性,并求出函数f(z)在可导点的导数。另外,函数f(z)在可导点解析吗?是或否请说明理由。

?u?v?u?u?2x ?2y ?0 ?0,u,v可微 解:?x?y?y?y所以x?y时函数可导,且f?(z)x?y?2x。

因为函数在可到点的任一邻域均不可导,所以可导点处不解析。 4. (6分)已知解析函数f(z)?u?iv的实部u?y3?3x2y,求函

7

数f(z)?u?iv的表达式,并使f(0)?0。

?u?y3?3x2y?u?v?u?v22??6xy?,?3y?3x??,?x?y?y?x?v?x3?3xy2?c解:f(z)?y3?3x2y?i(x3?3xy2)?ic

?f(0)?0?c?0f(z)?y3?3x2y?i(x3?3xy2)5.(6×2)计算积分:

(1)?Cdz, n?1(z?z0)其中C为以z0为圆心,r为半径的正向圆周, n为正整数;

ez(2)?|z|?3dz。 2(z?1)(z?2)解 (1)设C的方程为z?z0?rei?(0???2π),则

2πdzirei? ?C??n?1i(n?1)?d? n?10r(z?z0)e2π ??0 所以 ?Cid? rnein?i ?nr?2π0(cosn??isinn?)d?

dzdz??2πi(当n?0时)

(z?z0)n?1?Cz?z0 8

复变函数与积分变换试题及答案20课件.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0ctsd41idn83hrt8bf1m52amw9lhr30088q_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top