【解答】解:三视图中有一个图是三角形,符合这样条件的有,圆锥,三棱柱,三棱锥等.
【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.
7.(3分)在同一平面内用游戏棒搭4个大小一样的等边三角形,至少要 9 根游戏棒;在空间搭4个大小一样的等边三角形,至少要 6 根游戏棒. 【分析】根据题意可知在同一平面内用游戏棒搭4个大小一样的等边三角形(两个菱形),至少要9根游戏棒,在空间搭4个大小一样的等边三角形,如三棱锥,至少要6根游戏棒. 【解答】解:由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒; 因为空间可以共棱,所以至少要6根游戏棒. 【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 8.(3分)一个直角三角形绕其中一条直角边旋转一周所形成的几何体是 圆锥体 . 【分析】本题是一个直角三角形围绕一条直角边为轴旋转一周,根据面动成体的原理即可解. 【解答】解:直角三角形绕它的直角边旋转一周可形成圆锥. 故答案为:圆锥体. 【点评】此题考查了立体图形和平面图形的理解能力,主要培养学生的观察能力和空间想象能力.
9.(3分)一个多面体的面数为6,棱数是12,则其顶点数为 8 . 【分析】因为多面体的面数为6,棱数是12,故多面体为四棱柱. 【解答】解:根据四棱柱的概念,有8个顶点. 故答案为8.
第6页(共12页)
【点评】本题考查的棱柱的定义,关键点在于:棱柱的面与面相交成棱,棱与棱相交成点.
10.(3分)一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,至少需用 6 块正方体,最多需用 11 块正方体.
【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形. 【解答】解:可得到第二层有2个小正方块,结合左视图第一层最少有4个正方体,最多有9个小正方体,
故至少需用6块正方体,最多需用11块正方体. 【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“主视图疯狂盖,左视图拆违章”就更容易得到答案.
三、选择题:
11.(5分)下列立体图形,属于多面体的是( ) A.圆柱
B.长方体 C.球 D.圆锥 【分析】多面体指四个或四个以上多边形所围成的立体. 【解答】解:A、圆柱有3个面,一个曲面两个平面; B、长方体有6个面,故是多面体; C、球只有一个曲面;
D、圆锥有2个面,一个曲面,一个平面. 故选:B.
【点评】本题考查的多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体.
12.(5分)下面图形是棱柱的是( )
第7页(共12页)
A. B. C. D.
【分析】棱柱:有两个面互相平行且相等,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱. 【解答】解:A、符合棱柱的概念是棱柱; B、上下两个底面不相等故不是; C、只有一个底面不不是; D、上下两个底面不相等故不是. 故选:A.
【点评】本题主要考查棱柱的定义.棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等.
13.(5分)一个四棱柱被一刀切去一部分,剩下的部分可能是( ) A.四棱柱 B.三棱柱 C.五棱柱 D.以上都有可能
【分析】三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置. 【解答】解:三棱柱、四棱柱、五棱柱都有可能. 故选D.
【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.
第8页(共12页)
14.(5分)一个立体图形的三视图形如图所示,则该立体图形是( )
A.圆锥 B.球 C.圆柱 D.圆
【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.
【解答】解:A、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;
B、球的三视图都是圆形,错误;
C、圆柱的三视图分别是长方形,长方形,圆,正确; D、圆不是几何体,它是个图形,错误. 故选:C.
【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.
15.(5分)下列图形中,是正方体的平面展开图的是( )
A. B. C. D.
【分析】由平面图形的折叠及正方体的展开图解题.
【解答】解:A,D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,而选项B缺少上下两个底面. 故选:C.
【点评】只要有“田”字格的展开图都不是正方体的表面展开图.
16.(5分)已知某多面体的平面展开图如图所示,其中是三棱柱的有( )
A.1个 B.2个 C.3个 D.4个
第9页(共12页)
【分析】根据已知图形和多面体的特点分析各图案的能围成的几何体,熟记三棱锥、三棱柱的定义与区别解答.
【解答】解:从图中左边第一个是三棱锥; 第二个是三棱柱; 第三个是四棱锥; 第四个是三棱柱, 故选:B.
【点评】熟记常见立体图形的展开图的特征,是解决此类问题的关键.
17.(5分)七棱柱的侧面是( )
A.长方形 B.七边形 C.三角形 D.正方形
【分析】根据棱柱的概念和定义可知七棱柱侧面是长方形底面是七边形组成即可解.
【解答】解:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.七棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等. 故选:A.
【点评】本题主要考查棱柱的定义.棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等.
18.(5分)如果一个立体图形的三个视图都是正方形,那么关于这个立体图形的以下三种说法正确的有( )
①这个立体图形是四棱柱;②这个立体图形是正方体;③这个立体图形是四棱锥. A.1个 B.2个 C.3个 D.以上全不对
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【解答】解:正方体也是四棱柱; 正方体的三视图均为正方形;
四棱锥是三视图为三角形,三角形,四边形和两条对角线;
第10页(共12页)
相关推荐: