专题四 概率与统计
高频考点·真题回访 1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 ( )
A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
【解析】选B.评估这种农作物亩产量稳定程度的指标是标准差.
2.(2018·全国卷Ⅲ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是 ( ) A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【解析】选A.设新农村建设前的收入为M,而新农村建设后的收入为2M,
则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项符合题意;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项不符合题意;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项不符合题意;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D项不符合题意.
3.(2017·全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )
A.0.6 B.0.5 C.0.4 D.0.3
【解析】选D.用1,2代表两名男同学,A,B,C代表三名女同学,则选中的两人可以为12,1A,1B,1C,2A,2B,2C,AB,AC,BC共10种,全是女同学有AB,AC,BC共3种,所以概率
P==0.3.
4.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
( )
1
A.
1 2 3 4 5 B.
1 C.2 (1,2) (2,2) (3,2) (4,2) (5,2) 3 D.
4 (1,4) (2,4) (3,4) (4,4) (5,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) 【解析】选D.如表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数
(1,1) (2,1) (3,1) (4,1) (5,1) (1,3) (2,3) (3,3) (4,3) (5,3) 总计有25种情况,满足条件的有10种,所以所求概率为=.
5.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了
2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是 ( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月份
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
【解析】选A.由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误. 6.(2018·全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是____________. 【解析】根据题干中有大量客户,且不同年龄段客户对其服务的评价有较大差异,可知最合适的抽样方法是分层抽样. 答案:分层抽样
7.(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 [10,15) 天数 2 [15,20) [20,25) [25,30) [30,35) [35,40) 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量不超过300瓶的概率.
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为
2
450瓶时,写出Y的所有可能值,并估计Y大于零的概率. 【解析】(1)需求量不超过300瓶,即最高气温不高于25℃,从表中可知有54天,所以所求概
率为P==.
(2)Y的可能值列表如下:
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) Y -100 -100 300 900 900 900 低于20℃:Y=200×6+250×2-450×4=-100; [20,25):Y=300×6+150×2-450×4=300; 不低于25℃:y=450×(6-4)=900,
所以Y大于0的概率为P=+++=.
8.(2018·全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
第一种生产方式 第二种生产方式 超过m 不超过m (3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:K=
2
,
P 0.050 0.010 0.001 k0 3.841 6.635 10.828 【解析】(1)第二种生产方式的效率更高. 理由如下:
3
方法一:由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80 min,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79 min.因此第二种生产方式的效率更高.
方法二:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5 min,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5 min.因此第二种生产方式的效率更高.
方法三:由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80 min;用第二种生产方式的工人完成生产任务平均所需时间低于80 min,因此第二种生产方式的效率更高.
方法四:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
(2)由茎叶图知m=列联表如下:
=80.
超过m 15 5 不超过m 5 15 第一种生产方式 第二种生产方式 (3)由于K的观测值k=
认为两种生产方式的效率有差异.
2
=10>6.635,所以有99%的把握
4
相关推荐: