19.证明:(Ⅰ)设AC与BD相交于点O,连接OE. 由题意知,底面ABCD是菱形,则O为AC的中点,
又E为AP的中点,所以OE//CP,且OE??平面BDE,PC?平面BDE, 则PC//平面BDE. (Ⅱ)S?PCE?111S?PAC???23?2?3, 222因为四边形ABCD是菱形,所以AC?BD, 又因为PA?平面ABCD, 所以PA?BD,
又PAIAC?A,所以DO?平面PAC, 即DO是三棱锥D?PCE的高,DO?1, 则VP?CDE?VD?PCE?13?3?1?. 33
20.解:(Ⅰ)由e?1,得a?2c, 2因为|AF1|?2,|AF2|?2a?2,
22由余弦定理得|AF1|?|AF2|?2|AF1|?|AF2|cosA?|F1F2|,
解得c?1,a?2, ∴b2?a2?c2?3,
x2y2??1. ∴椭圆C的方程为43(Ⅱ)因为直线PQ的斜率存在,设直线方程为y?k(x?1),P(x1,y1),Q(x2,y2),
?y?k(x?1),?2222联立?x2y2整理得(3?4k)x?8kx?4k?12?0,
?1,??3?48k2?6k由韦达定理知x1?x2?,, y?y?k(x?x)?2k?12123?4k23?4k2此时N(4k?3k1,),又M(0,),则kMN223?4k3?4k8213k?224k?3?4k283?4k, ???224k32k0?3?4k2∵MN?PQ,∴kMN??则kMN??2或kMN??113,得到k?或. k222, 3MN的直线方程为16x?8y?1?0或16x?24y?3?0.
exex(x?1)e2e221.解:(Ⅰ)∵f(x)?,∴f'(x)?,f'(2)?,又切点为(2,), 2xx42e2e2?(x?2),即e2x?4y?0. 所以切线方程为y?24ex(ex?2x)(x?1)?2x?2lnx,g'(x)?(Ⅱ)设函数g(x)?f(x)?2(x?lnx)?,x?(0,??), xx2设h(x)?e?2x,x?(0,??),则h'(x)?e?2,令h'(x)?0,则x?ln2, 所以x?(0,ln2),h'(x)?0;x?(ln2,??),h'(x)?0. 则h(x)?h(ln2)?2?2ln2?0,
xx(ex?2x)(x?1)?0x?1, 令g'(x)?2x所以x?(0,1),g'(x)?0;x?(1,??),g'(x)?0;
则g(x)min?g(1)?e?2?0,从而有当x?(0,??),f(x)?2(x?lnx). 22.解:(Ⅰ)曲线C1的参数方程为?2?x?5?5cost(t为参数),
y?4?tsint?2则曲线C1的普通方程为(x?5)?(y?4)?25,
曲线C1的极坐标方程为??10?cos??8?sin??16?0.
(Ⅱ)曲线C1的极坐标方程??10?cos??8?sin??16?0,曲线C2的极坐标方程为??2cos?,联立得sin(2??22?4)?2?,又??[0,2?),则??0或??, 24当??0时,??2;当???4时,??2,所以交点坐标为(2,0),(2,).
4?23.证明:(Ⅰ)f(x)?|x?4m|?|x?当且仅当|m|?111|?|4m?|?4|m|?||?4, mmm1时取“”号. 2ab??1, 44(Ⅱ)由题意知,k?4,即a?b?4,即
则
1414ab5ba59??(?)(?)?????1?, abab4444ab44当且仅当a?
48,b?时取“?”号. 33
相关推荐: