(3)由于:
因此,零状态是正常返的,由相通性,故所有状态都是正常返的,即此马氏链是不可约的。
(4)由马氏链的无后效性,可知此时的T就是零状态到零状态的首达时间。因此我们有:
随机过程习题解答(二)
P228/1。证明:由于s?t,有
P?N(s)?k/N(t)?n??P?N(s)?k,N(t)?n??P?N(t)?n?
P?N(s)?k??P{N(t?s)?n?k}?P?N(t)?n?其中
(?s)k??s(?(t?s))n?k??(t?s)P?N(s)?k??P{N(t?s)?n?k}?e?e
k!(n?k)!(?t)n??tP?N(t)?n??e
n!所以
(?s)k??s(?(t?s))n?k??(t?s)e?ek!(n?k)!P?N(s)?k/N(t)?n??(?t)n??te n!kn?k?n??s??s?sk(t?s)n?kn!?k?????k??1?k?kttn?kk!(n?k)!???????证毕。
P229/3. 解:(1)因为{N(t),t?0}是一Poission过程,由母函数的定义,有:
?N(t??t)(s)??P{N(t)?k}?skk?0??k?????P{N(t)?l}?P{N(?t)?k?l}??skk?0?l?0??k????P{N(t)?l}?sl?P{N(?t)?k?l}?sk?lk?0?l?0???????P{N(t)?l}?sl?P{N(?t)?k?l}?sk?ll?0?k?l??????????? ???P{N(t)?l}?sl?0????l???P{N(?t)?k?l}?s?k?lk?l????P{N(t)?l}?sl?0l???P{N(?t)?j}?s?jj?0??N(t)(s)??N(?t)(s)(2)有上面(1)的结果,可得:
??N(t)(s)?t??lim?t?0?N(t??t)(s)??N(t)(s)?t?N(t)(s)??N(?t)(s)??N(t)(s)?t?N(?t)(s)?1?t?t?0?lim?t?0
??N(t)(s)?lim(3)当?t充分小时,由于:
?N(?t)(s)??P{N(?t)?s}?skk?0???1???t??(?t)??s0????t??(?t)??s1???(?t)?skk?2?
因此,当s?1时,有:
lim?t?0?N(?t)(s)?1?t???t???ts??(?t)??(?t)k?lim???s??(s?1)
?t?t?0k?2?t由(2)的结果,我们有:
??N(t)(s)?t??(s?1)?N(t)(s)
P229/4. 解:(1)由上面3题的结果(3),我们有:
???N(t)(s)??(s?1)?N(t)(s)???N(t)(s)?e?(s?1)t ?t???N(0)(s)?1?(2)由于?N(t)(s)是随机过程N(t)的母函数,且?N(t)(s)?e?(s?1)t,将函数e?(s?1)t关于s(s?1)展开成级数形式,我们可得:
?N(t)(s)?e?(s?1)t(?t)k??tk???e?s
k!k?0?由母函数与分布函数的唯一性定理,可得:
(?t)k??tP{N(t)?k}??e,k?0,1,2?
k!
P230/8. 解:由特征函数的定义,我们有:
?X(t)(u)?EeiuX(t)?n?0?????
??P{N(t)?n}?EeiuX(t)N(t)?n(?t)n??t???e?Eeiu?Y1?Y2??Yn?n!n?0??(?t)n??t???e?EeiuY1n!n?0?????n令EeiuY1??Y1(u),则有:
???X(t)(u)??n?0?(?t?Y1(u))nn!?e??t?exp?t?Y1(u)?1 (*)
????
若Yn(n?1,2,?)的概率分布为:
P{Yn?1}??1?1??2,P{Yn??1}??2?1??2
则
?Y(u)?E?eiuY??nn?1?1??2?eiu??2?1??2?e?iu (**)
将(**)代入(*),我们有:
???1???2iu?iu?X(t)(u)?exp?(?1??2)t??e??e?1????????212?1?? ??exp?1teiu??2te?iu?(?1??2)t??
P230/7. 解:先求{N0(t),t?0}的特征函数:
?N0(t)(u)?EeiuN0(t)?Eeiu(N1(t)?N2(t))iuN1(t)i(?u)N2(t)??E?e?????E?e??(?1t)n??1tiun?(?2t)m??2ti(?u)m???e?e???e?en!m!n?0m?0??(?1te)(?te)?e??1t??2?e??2tn!m!n?0m?0??iuni(?u)m
???exp??te??teiu12?exp?1teiu?e??1t?exp?2tei(?u)?e??2t?iu??(?1???)t?2由上面8题的结果,根据特征函数与分布函数的唯一性定理,可知{N0(t),t?0}是复合Poission过程。
P231/10. 解:由于
P?X1(t)?k,X2(t)?jX1(t)?X2(t)?X3(t)?n???P?X1(t)?k,X2(t)?j,X1(t)?X2(t)?X3(t)?n?
P?X1(t)?X2(t)?X3(t)?n?因为Xi(t)的母函数为:
?N(t)(s)?exp??i(s?1)t?,
由独立性,可知X1(t)?X2(t)?X3(t)的母函数为:
?X(t)(s)???Xi?13(t)(s)?exp???1??2??3??s?1?t?,
所以X(t)?X1(t)?X2(t)?X3(t)是参数为?1??2??3的泊松过程,即
P?X1(t)?X2(t)?X3因此我们有:
???1??2??3?t?n?????(t)?n??e12??3?tn!
P?X1(t)?k,X2(t)?jX1(t)?X2(t)?X3(t)?n????1t?k?k!j!(n?j?k)!???1??2??3?t?n???1??2??3?ten!n?k?j?1k?2j?3n!??k!j!(n?k?j)!(?1??2??3)ne??1t???1t?je??2t???1t?n?j?ke??3t
P231/12. 解:(1)由
相关推荐: