通过信用评分的方法来分析个人客户的信用状况,可以增强个人信贷决策的科学性与公正性,并且提高个人信贷决策的效率。因此越来越多的数学方法被引入到了信用评分中,概括来看,主要分为统计和非统计两大类。统计方法主要包括判别分析、回归分析、分类树和最近邻法,非统计方法包括神经网络、遗传算法、专家系统和数学规划方法。从发展过程来看,虽然统计方法应用最早并且现在仍然是非常重要的方法。但是采用传统的评估方法对企业客户进行信用评价时,判断失误的例子经常发生,给信贷机构带来巨大损失。而采用神经网络评价系统不仅评价结果具有较高的可信度,而且可以避免信贷分析人员的主观好恶和人情关系造成的错误,它以客户的信用资料为输入,将实际的信用情况作为评价结果输出。bp神经网络的网络结构简单,算法易于编程实现;bp网络用最小均方差学习方式,只要有足够的隐层和隐结点,可以逼近任意的非线性映射关系;实证结果表明,在众多建议型神经网络算法中,bp网络具有很好的评估效果。
相关推荐: