x2?y2?1,消去y并整理得: (2)易知直线l的斜率存在,设直线l的方程为y?kx?m,代入3?1?3k?x22?6kmx?3m2?3?0,
要与C2相交于两点,则应有:
22?1?3k?0???1?3k?0 ??2?22222?m?1?3k??36k?m?4?1?3k???3m?3??0?设Q1?x1,y1?,Q2?x2,y2?,
?3m2?36km则有:x1?x2?,x1?x2?. 221?3k1?3k??????????22又OQ1?OQ2?x1x2?y1y2?x1x2??kx1?m??kx2?m???1?k?x1x2?km?x1?x2??m. ??????????又:OQ1?OQ2??5,所以有:
?m2?1?9k2,②
1[(1?k2)(?3m2?3)?6k2m2?m2(1?3k2)]??5, 21?3kx2?y2?1,消去y并整理得:?1?3k2?x2?6kmx?3m2?3?0, 将y?kx?m,代入3222要有两交点,则??36km?41?3k???3m2?3??0?3k2?1?m2.③
2由①②③有:0?k?1 9设M1?x3,y3?、M2?x4,y4?.
3m2?3?6km有:x3?x4?,x3?x4? 221?3k1?3kM1M2?1?k2?36k2m2?4?3m2?3??1?3k2??1?3k?2222 ?1?k2??4?3m2?3?9k2??1?3k?. 22将m?1?9k代入有:M1M2
?1?k?2144k2?1?3k?22 ?M1M2?12k1?k2. 21?3kk2?1?k2?,令t?k2,t?(0,]
?M1M2?12?1?3k2?2219令f?t??t?1?t??1?3t??f'?t??191t?(0,]. 39?1?3t?,
1?t所以f'?t??0在t?(0,]内恒成立,故函数f?t?在t?(0,]内单调递增,
195]?M1M2?(0,10]. 721?m?lnx21.【解析】(1)f'?x??,x?1, 2x故f?t??(0,当1?m?0时,即m?1时,1?m?lnx?0在?1,???上恒成立, 所以f?x?的单调减区间是?1,???,无单调增区间
当1?m?0时,即m?1时,由f'?x??0得x?(1,e1?m).由f'?x??0,得x?(e1?m,??), 所以f?x?的单调减区间是(e1?m,??),单调增区间是(1,e1?m]
22(2)由题意,lnx?mx?1,x?1恒成立,g?x??lnx?mx?1.x?1.g?x?max?0,
????11?2mx2g'?x???2mx?,x?1.
xx①m?0时,g'?x??0.(x?1),g?x?在?1,???上单调递增.∴x?1,g?x??g?1??0,舍去。 ②m?1时,g'?x??0,(x?1),g?x?在?1,???上单调递减,∴x?1.g?x??g?1??0,成立 2③0?m?1111x?(1,)(1,)上单调 时,g'?x?=0(x?1):x=时.在g'x?0gx????∴22m2m2m递增,g?x??g?1??0,舍去。 综上,m?1 222.【解析】(1)直线l的直角坐标系方程是2x?y?a?2?0,
2Cx?2?y?4 的直角坐标方程是??圆
2(2)由(1)知圆心为C?2,0?,半径r?2, 设图心到直线的距离为d,因为直线与圆相切,
所以d?4?a?25?2?a5?2解得a?2?25 23.【解析】(1)当a?1时,不等式f?x??4?x?1?x?1?4. 当x?1时,f?x?=2x?4,解得x?2; 当?1?x?1时,f?x?=2?4,无解; 当x??1时,f?x???2x?4,解得x??2, 综上所述,不等式的解集为???,?2???2,???
(2)f?x??x?a?x?a??x?a???x?a??2a, ∴2a?6,解得a?3或a??3, 即a的取值范围是???,?3???3,???
相关推荐: