cities. This paper points out the difficulties these two cities are facing and how can they be settled.
Key words IT Industry IT industry cluster compare countermeasure
Ä¿ ¼ 9000×Ö
1.¶«Ý¸IT²úÒµ¼¯ÈºµÄÐγɺͷ¢Õ¹1
1.1ÊÔ̽½×¶Î£¨1989¡«1991Ä꣩ 1
1.2·¢Õ¹½×¶Î£¨1992¡«1994Ä꣩1
1.3²úÒµ¼¯ÈºÐγɽ׶Σ¨1996¡«1999Ä꣩ 1
1.4³ÉÊì½×¶Î£¨2000Ä꿪ʼÖÁ½ñ£©1
2.ËÕÖÝIT²úÒµ¼¯ÈºµÄÐγɺͷ¢Õ¹ 2
2.1ÊÔ̽½×¶Î£¨1993¡«1998Ä꣩2
ÖÂл...8
ÕªÒª
Ò£¸Ð¼¼Êõ²»¶ÏÌá¸ß£¬ÉÁÖÒ£¸ÐͼÏñËùº¬ÐÅÏ¢Ô½À´Ô½¶à£¬½öÓùâÆ×ÐÅÏ¢ÎÞ·¨½«ÆäÇø·Ö¿ª£¬¶øÓÃÎÆÀíÌØÕ÷·ÖÎö¶ÔÓÚÔÚͼÏñµÄʶ±ðÆð×ŷdz£ÖØÒªµÄ×÷Óã¬Òò´ËÒ£¸ÐÓ°ÏñµÄÎÆÀí·ÖÎöÒѾ³ÉΪһÖÖÖØÒªµÄÌá¸ßÒ£¸ÐÓ°Ïñ·ÖÀྫ¶ÈµÄÊֶΡ£±¾ÎÄÒÔÉÁÖÒ£¸ÐͼƬΪÑо¿¶ÔÏó£¬Ñ§Ï°ÎÆÀí·ÖÎöµÄ²»Í¬·½·¨£¬Ñ¡ÔñºÏÊÊÇÒ¼òµ¥µÄ·½·¨¶ÔÉÁÖÒ£¸ÐͼÏñ½øÐÐÎÆÀí·ÖÎö¡£Ê×ÏÈ£¬Õë¶ÔÉÁÖÒ£¸ÐͼÏñµÄÌØµã²¢½áºÏÏÖÐÐÎÆÀí·ÖÎöµÄ²»Í¬·½·¨£¬Ñ¡ÔñÊÊÓÚÃèÊöÉÁÖÎÆÀíµÄ»Ò¶È¹²Éú¾ØÕó·½·¨£¬²¢ÔÚ´Ë»ù´¡ÉÏÌáÈ¡ÎÆÀíÌØÕ÷²ÎÊý¡£Æä´Î£¬¶ÔͼÏñ½øÐÐÆ½»¬£¬Ñ¡ÔñÒ»¸ö¾ùֵģ°æÈÃͼÏñ¸÷µã¼äµÄ¾àÀë¸ü¼Ó½Ó½üʹͼÏñƽ»¬¡£×îºó£¬ÀûÓÃk-meansËã·¨ÈÃÆ½»¬ºóµÄͼÏñ½áºÏÌáÈ¡µÄÌØÕ÷Öµ¶ÔͼÏñ¸÷µã½øÐоÛÀà·ÖÎö£¬°ÑÏà½üµÄµÄµã¹éÔÚÒ»Æð¡£±¾ÂÛÎĵÄËã·¨ÓÃMATLABÀ´ÊµÏÖ£¬ÊµÑé½á¹û±íÃ÷¸ÃÂÛÎÄËùÓõķÖÎö·½·¨¶ÔÉÁÖÒ£¸ÐͼÏñµÄÎÆÀí·ÖÎö¾ßÓÐÒ»¶¨µÄ¿É¿¿ÐÔ¡£
¹Ø¼ü´Ê£ºÉÁÖÒ£¸ÐͼƬ£»ÎÆÀí·ÖÎö£»»Ò¶È¹²Éú¾ØÕó£»ÎÆÀíÌØÕ÷Öµ£»k-meansËã·¨£»¾ÛÀà·ÖÎö
Abstract
Constantly has remote sensing technology improved, forest remote sensing image which contains more information. It is impossible to separate it only with spectral information, whereas texture analysis plays a important role in identification of image. Consequently texture analysis of remote sensing image has become a critical approach on improving classification accuracy of remote sensing image. The paper, consider forest remote sensing image as a study object and learn the different methods of texture analysis, choosing a suitable and simple method to analyze texture of forest sensing image. First of all, select the gray level co-occurrence matrix approach which is suitable to describe texture of forest through combining the characteristics of forest remote sensing image with the existing
methods of texture analysis. And get the texture eigenvalue based on it. Secondly, smooth the image. Select a average mask for the image to smooth it by closing the distance between points within the image. Finally, in the use of the k-means algorithm cluster-analyzes image by combining the image smoothed and the eigenvalue extracted .Get the similar part together. The algorithm of the paper is implemented by MATLAB, and the result indicates that analysis method which is used in this paper has certain reliability on texture analysis of remote sensing image.
Keywords£ºforest remote sensing image; texture analysis; gray level co-occurrence matrix ;texture eigenvalue; k-means arithmetic; cluster-analyze
Ñо¿ÒâÒå
¶ÔÉÁÖÒ£¸ÐͼÏñÎÆÀíµÄÇø·Ö£¬¾ÍÐèÒª³ä·ÖÀûÓÃÁÖ·Ö¿Õ¼äÌØÕ÷ÐÅÏ¢À´¶ÔÁÖ·Ö½øÐзÖÎö£¬ÒÔ´ïµ½Çø·ÖµÄÄ¿µÄ¡£ÎÆÀíÊÇͼÏñ·ÖÎöÖг£ÓõĸÅÄµ±Ä¿±êµÄ¹âÆ×ÌØÕ÷±È½Ï½Ó½üµÄʱºò£¬ÎÆÀíÌØÕ÷¶ÔÓÚÇø·ÖµØÎïÄ¿±ê¿ÉÄÜ»áÆðµ½»ý¼«µÄ×÷ÓÃ[5]£¬ÉÁÖÒ£¸ÐͼÏñµÄÎÆÀí·ÖÎöͨ¹ýÒ£¸ÐͼÏñËùÌṩµÄ¸÷ÖÖÄ¿±êµÄÌØÕ÷ÐÅÏ¢½øÐзÖÎö¡¢ÍÆÀíÓëÅжϣ¬×îÖմﵽʶ±ðÄ¿±ê»òÏÖÏóµÄÄ¿µÄ£¬´Ó¶øÊµÏÖ¶ÔÉÁÖÒ£¸ÐͼƬ²»Í¬µÄÎÆÀíµÄÇø·Ö£¬ÕâÑù×ÓÄܹ»½øÒ»²½Ìá¸ßÉÁÖÒ£¸ÐͼÏñµÄ·ÖÀྫ¶È¡£
Ëã·¨¸ÅÊö
¶ÔͼÏñ½øÐÐÎÆÀí·ÖÎöÓжàÖÖ·½·¨£¬²¢ÇÒÎÆÀíÌØÕ÷·ÖÎö¶ÔÓÚÔÚͼÏñÖиüºÃµÄʶ±ðÄ¿±êÆð×ŷdz£ÖØÒªµÄ×÷Óá£ÔÚÎÆÀíʶ±ðºÍ·Ö¸îÖУ¬»Ò¶È¹²Éú¾ØÕóÊǾµä¶þ½×ͳ¼Æ·½·¨£¬ËüÊǽ¨Á¢ÔÚ¹À¼Æ¶þ½××éºÏÌõ¼þ¸ÅÂÊÃܶȺ¯Êý»ù´¡ÉϵÄÎÆÀí·ÖÎö·½·¨£¬ÃèÊöµÄÊÇij·½ÏòÉϼä¸ôÒ»¶¨¾àÀëµÄÒ»¶ÔÏñËØµã»Ò¶È³öÏÖµÄͳ¼Æ¹æÂÉ¡£Òò´ËÓûҶȹ²Éú¾ØÕóµÄ·½·¨¶ÔÓÚÁÖ·ÖͼÏñµÄÎÆÀí¿ÉÒÔÆðµ½±È½ÏºÃµÄ×÷Óá£Í¬Ê±ÓÉÓÚÉÁÖÒ£¸ÐͼÏñÊÇÎÆÀí±È½Ï¸´ÔÓµÄͼƬ£¬½öÓûҶȹ²Éú¾ØÕóÌáÈ¡µÄÌØÕ÷Öµ£¬·Ö¸îºóµÄЧ¹û³Ê¿é×´£¬ÔÚ´¦Àí±ß½çµÄÎÊÌâÉϲ»ÊÇÄÇô׼ȷ¡£¶øÖ±½ÓÀûÓöÔͼÏñ½øÐÐÆ½»¬´¦ÀíÈ»ºóÓÃk-meansËã·¨Ò²¿ÉÒÔ¶ÔÒ£¸ÐͼƬ½øÐÐÎÆÀí·ÖÎö£¬²¢ÇÒÒ²ÓÐÒ»¶¨µÄЧ¹û¡£Òò´Ë±¾ÎIJÉÓõķ½·¨ÊÇÒԻҶȹ²Éú¾ØÕóÎÄÀíÌØÕ÷·ÖÎöΪÖ÷£¬ÔÙÑ¡ÔñºÏÊʵÄÄ£°æ¶ÔÔͼÏñÔÙ½øÐÐÆ½»¬´¦Àí£¬½µµÍͼÏñÔëÒôÓ°Ï죬ȻºóÓÃÆ½»¬ºóµÄͼÏñ½áºÏÌØÕ÷ÖµÀ´ÊµÏÖÎÆÀí·Ö¸î¡£
±¾ÎÄËã·¨µÄ»ù±¾Ë¼Â··ÖΪ5¸ö²½Ö裺
£¨1£©±àдËã·¨¹¹½¨»Ò¶È¹²Éú¾ØÕóº¯Êý£¬Í¬Ê±¶ÔÔͼÏñµÄ»Ò¶ÈÖµ½øÐÐÁ¿»¯¡£
£¨2£©Ñ¡È¡ºÏÊʵÄÄ£°æ¶ÔͼÏñ²»Í¬×Ó¿éʹÓûҶȹ²Éú¾ØÕóº¯ÊýÔËËãÇó³öÏàÓ¦µÄ»Ò¶È¹²Éú¾ØÕ󣬲¢ÀûÓù«Ê½Çó³ö¶ÔӦͼÏñ×Ó¿éµÄÌØÕ÷Öµ¡£
£¨3£©ÓÿÕÓòƽ»¬Â˲¨µÄ·½·¨À´¶ÔͼÏñ½øÐÐÆ½»¬¡£
£¨4£©ÀûÓÃÆ½»¬ºóµÄͼÏñΪ»ù´¡½áºÏ֮ǰÇó³öµÄÌØÕ÷Öµ£¬ÔÚͼÏñÂþÓζÔͼÏñ½øÐбéÀú±È½Ï£¬Ó¦ÓÃk-means¾ÛÀà·½·¨£¬À´Ê¹Í¼ÏñÏà½üµÄµã¹éΪһÀà¡£
£¨5£©¶Ô²»Í¬ÀàµÄͼÏñÉÏÉ«À´Çø·Ö²»Í¬ÎÆÀí¡£
Õâ¸öû·ÂÕæ Ö»Òª¿ªÁËMATLAB Ëæ±ãµ¼½øÍ¼Æ¬´¦Àí¾Í¿ÉÒÔÁË ³ÌÐò ÂÛÎÄÖÐÓÐ
Ŀ¼
ÕªÒª I
Abstract II
1 ÒýÑÔ 1
1.1 ÎÊÌâÀ´Ô´ 1
1.2Ñо¿ÒâÒå 1
2 Ñо¿±³¾°
2
2.1 ÎÆÀí·ÖÎöµÄÀíÂÛ¸ÅÊö 2
2.1.1 ÎÆÀíµÄ¸ÅÄî 2
2.1.2 ÎÆÀí·ÖÎöµÄÄÚÈÝ 2
2.2½üÄêµÄ¹úÄÚÍâÑо¿Çé¿ö 3
3 Ëã·¨Éè¼Æ
6
3.1Ëã·¨¸ÅÊö 6
3.2Ëã·¨¹¹Ôì 7
3.2.1 »Ò¶È¹²Éú¾ØÕó 7
3.2.2 ÌØÕ÷ÖµÌáÈ¡ 10
3.2.3¶ÔÔͼÏñ½øÐÐÆ½»¬´¦Àí 12
3.2.4 k-means¾ÛÀàËã·¨ 14
3.2.5¶Ô´¦ÀíºóµÄͼÏñÉÏα²ÊÉ« 17
4 ʵÑé½á¹ûÓë·ÖÎö 19
5 ×ܽáÓëÕ¹Íû 21
²Î¿¼ÎÄÏ× 22
ÖÂл 23
¸½Â¼ £¨³ÌÐò´úÂ룩 24
²Î¿¼ÎÄÏ×
[1] M Singh.S Singh.Spatial Texture Analysis:A cornparative Study.Proc[C].15th International Conference on Pattern Recognition(ICPR¡¯
02),Quebec,Pages:l1-15,2002£®
[2] ÕÂØ¹½ú£®»ùÓÚÄÚÈݵÄÊÓ¾õÐÅÏ¢¼ìË÷[M].±±¾©:¿ÆÑ§³ö°æÉç,2003.
[3] ÖйúÍøÕ¾.ERDAS IMAGINE Expertclassר¼Ò·ÖÀàϵͳ½éÉÜ[EB£¯OL].ESRIÖйúÍøÕ¾,2003.
[4] ÁõÏþÁú,ÀîÓ¢³É.µØÎïÆµÆ×ÔÚÒ£¸ÐͼÏñ·ÖÀàÖеÄÓ¦ÓÃÑо¿[J].Ò£¸ÐÐÅÏ¢,1999,(1):41-44.
[5] ËÎÏþÓî,µ¥Ð½¨.¸ß·Ö±æÂÊÎÀÐÇÓ°ÏñÔÚ³ÇÊн¨ÖþÎïʶ±ðÖеijõ²½Ó¦ÓÃ[J].Ò£¸ÐÐÅÏ¢,2002,(1):70-73.
[6] ÀîµÂÈÊ,ÕżÍÏÍ.Ó°ÏóÎÆÀí·ÖÎöµÄÏÖ×´ºÍ·½·¨£¨Ò»£©.Îä²â¿Æ¼¼,1993,(3):30-37.
[7] ÕÂØ¹½ú. ͼÏñ¹¤³Ì£¨ÖвᣩͼÏñ´¦ÀíºÍ·ÖÎö[M].±±¾©:Ç廪´óѧ³ö°æÉç,1999,:280-288.
[8] ÕÂØ¹½ú.»ùÓÚÄÚÈݵÄÊÓ¾õÐÅÏ¢¼ìË÷[M].±±¾©:¿ÆÑ§³ö°æÉç,2003.
[9] Mihran Tuceryan.Texture Analysis.The Hand Book of Pattern Recognition and Computer Vision[M].New York:World ScientificPublishing Co.,1993,235-276.
[10] Ëï¼Ò±ú,ÊæÄþ.Ò£¸ÐÔÀí·½·¨ºÍÓ¦ÓÃ[M].±±¾©:²â»æ³ö°æÉç,l997.
[11] ÂíÍ¢.¸ß·Ö±æÂÊÎÀÐÇÓ°Ïñ¼°ÆäÐÅÏ¢´¦ÀíµÄ¼¼ÊõÄ£ÐÍ[J].Ò£¸ÐÐÅÏ¢,2001,(3):5l2-5l5.
[12] ÄþÊéÄê,ÂÀËÉÌÄ.Ò£¸ÐͼÏñ´¦ÀíÓëÓ¦ÓÃ[M].±±¾©:µØÕð³ö°æÉç,l995.
[13] S Karkanis£®Classification of Endoscopic Images Based on Texture Spectrum£®Workshop on Machine Learning in Medical
Applications[M].Chania,Greece.Pages:63-69.1999.
[14] ÖìÊöÁú,ÕÅÕ¼ÄÀ.Ò£¸ÐͼÏñ»ñÈ¡Óë·ÖÎö[M].±±¾©:¿ÆÑ§³ö°æÉç,2000.
[15] Haralick RM.Statistical and structural
approachestotexture[C].InProceeding ofIEEE,1975,67(5):786-804.(±ÏÒµÉè¼Æ)
[16] ÍõêÏ,°×Ñ©±ù,Íõ»Ô.»ùÓÚ¿Õ¼ä»Ò¶È¹²Éú¾ØÕóľ²ÄÎÆÀí·ÖÀàʶ±ðµÄÑо¿[J].ÉÁÖ¹¤
³Ì,2007,(1):32-36.
[17] ÀîµÂÈÊ,ÕżÍÏÍ.Ó°ÏóÎÆÀí·ÖÎöµÄÏÖ×´ºÍ·½·¨£¨¶þ£©.Îä²â¿Æ¼¼,1993,(4):16-25.
¸½Â¼ £¨²¿·Ö³ÌÐò´úÂ룩
³ÌÐò1ÓÃMATLAB±àдµÄ»Ò¶È¹²Éú¾ØÕóµÄº¯Êý£º
function F=H(image,d,angle,consize) %imageΪĿ±êͼÏñ d ΪÉú³É²½³¤ angle Éú³É½Ç¶È consize »Ò¶È¼¶
image=double(image); %תΪ˫¾«¶È
GCmatrix=zeros(consize,consize);%´´½¨»Ò¹²¾Ø
[image_x image_y]=size(image); %ͼÏñµÄÐкÍÁÐ
switch angle % 0¶È·½Ïò°´²½Îªd£¬ÏñËØ¼äµÄ¹ØÏµ
case £°
for i=1:image_x
for
j=1:(image_y-d)
GCmatrix(image(i,j),image(i,j+d))=GCmatrix(image(i,j),image(i,j+d))+1;
end
end
case {45} % 45¶È·½Ïò°´²½Îªd£¬ÏñËØ¼äµÄ¹ØÏµ
for i=(1+d):image_x
for
j=1:(image_y-d)
GCmatrix(image(i,j),image(i-d,j+d))=GCmatrix(image(i,j),image(i-d,j+d))+1;
end
end
case {90} % 90¶È·½Ïò°´²½Îªd£¬ÏñËØ¼äµÄ¹ØÏµ
for
i=(1+d):image_x
for j=1:image_y
GCmatrix(image(i,j),image(i-d,j))=GCmatrix(image(i,j),image(i-d,j))+1;
end
end
case {135} % 135¶È·½Ïò°´²½Îªd£¬ÏñËØ¼äµÄ¹ØÏµ
for
i=(1+d):image_x
for j=(1+d):image_y
Õª Òª
¹¤×ʹÜÀíϵͳÊǵäÐ͵ÄÐÅÏ¢¹ÜÀíϵͳ,Æä¿ª·¢Ö÷Òª°üÀ¨ºǫ́Êý¾Ý¿âµÄ½¨Á¢ºÍά»¤ÒÔ¼°Ç°¶ËÓ¦ÓóÌÐòµÄ¿ª·¢Á½¸ö·½Ãæ¡£¶ÔÓÚǰÕßÒªÇó½¨Á¢ÆðÊý¾ÝÒ»ÖÂÐÔºÍÍêÕûÐÔÇ¿.Êý¾Ý°²È«ÐԺõĿ⡣¶ø¶ÔÓÚºóÕßÔòÒªÇóÓ¦ÓóÌÐò¹¦ÄÜÍ걸,Ò×ʹÓõÈÌØµã¡£
¾¹ý·ÖÎöÈç´ËÇé¿ö,ÎÒÃÇʹÓÃMICROSOFT¹«Ë¾µÄVisual FoxPo¹¤¾ß,ÓÈÆäÊÇÊý¾Ý´°¿ÚÕâÒ»ÄÜ·½±ã¶ø¼ò½à²Ù×ÝÊý¾Ý¿âµÄÖÇÄÜ»¯¶ÔÏó¡£
Ëæ×ž¼ÃµÄ·¢Õ¹£¬ÆóÒµÕýÏò×Å´óÐÍ»¯¡¢¹æÄ£»¯·¢Õ¹£¬¶ø¶ÔÓÚ´óÖÐÐÍÆóÒµ£¬Ô±¹¤¡¢Ö°³ÆµÈ¸ú׏¤×ʹÜÀíÓйصÄÐÅÏ¢ËæÖ®¼±¾çÔö¼Ó¡£ÔÚÕâÖÖÇé¿öϵ¥¿¿È˹¤À´´¦ÀíÔ±¹¤µÄ¹¤×ʲ»µ«ÏÔµÃÁ¦²»´ÓÐÄ£¬¶øÇÒ¼«ÈÝÒ׳ö´í¡£
¸ÃϵͳµÄ¾ßÌåÈÎÎñ¾ÍÊÇÉè¼ÆÒ»¸öÆóÒµ¹¤×ʵÄÊý¾Ý¿â¹ÜÀíϵͳ£¬ÓɼÆËã»úÀ´´úÌæÈ˹¤Ö´ÐÐһϵÁÐÖîÈçÔö¼ÓÐÂÔ±¹¤¡¢É¾³ý¾ÉÔ±¹¤¡¢¹¤×ÊÐ޸ġ¢²éѯ¡¢Í³¼Æ¼°´òÓ¡µÈ²Ù×÷¡£ÕâÑù¾Íʹ°ì¹«ÈËÔ±¿ÉÒÔÇáËÉ¿ì½ÝµØÍê³É¹¤×ʹÜÀíµÄÈÎÎñ¡£
¹Ø¼ü×Ö£º¹ÜÀíϵͳ¡¢Ç°¶ËÓ¦ÓóÌÐò¡¢Êý¾Ý¿â
Abstract
The enterprise wage management system is a typical system of information management system, which mainly consists of the establishment and maintenance of background data-base and exploitation of forepart application. The consistence, integrality and security of the
Ïà¹ØÍÆ¼ö£º