第一范文网 - 专业文章范例文档资料分享平台

解析几何定值定点 专题

来源:用户分享 时间:2025/8/4 10:24:05 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

全国名校高考数学复习优质学案汇编(附详解)

【精选名校模拟】

x2y21.在平面直角坐标系xOy中,已知直线y?x与椭圆2?2?1(a?b?0)交于点A,

ab,且AB?B(A在x轴上方)积为2(如图1).

26a.设点A在x轴上的射影为N,三角形ABN的面3

全国名校高考数学复习优质学案汇编(附详解)

(1)求椭圆的方程;

(2)设平行于AB的直线与椭圆相交,其弦的中点为Q. ①求证:直线OQ的斜率为定值;

②设直线OQ与椭圆相交于两点C, D(D在x轴上方),点P为椭圆上异于A, C, D一点,直线PA交CD于点E, PC交AB于点F,如图2,求证: AF?CEB,为定值.

x2y21【答案】(1)??1 (2) ①?②45 632【解析】

(2)设平行AB的直线的方程为y?x?m,且m?0,

全国名校高考数学复习优质学案汇编(附详解)

y?x?m① 联立{x2所以xQ? ,得到3x2?4mx?2m2?6?0, y2??163x1?x22mm, yQ?xQ?m?; ??233myQ1故,直线OQ的斜率为kOQ=?3??(定值)

xQ?2m231②由题意可知A2,2,AB:y?x,OQ:y??x,

2??1y??x,2联立方程组{2 得C?2,?1?,D??2,1?, 2xy??1,63设P?x0,y0?,先考虑直线斜率都存在的情形: 直线AP:y?2?y0?2x0?x?2?, ?2y0?2x?2?22?x0?y0?2?y0?x0??x0?2, 得E??, ??1?32?x0?2y032?x0?2y0?y??x2y?2?联立方程组: {??直线PC:y?1?y0?1?x?2?, x0?2联立方程组: {y?1?y0?1?x0?2y0?x?2?x0?2y0?x0?2, 得F??, 3?y?x3?y?x0000??y?x则AF?232?x0?2y02??23?y0?x0?2?1x0???2?2y0?3?y0?x0,

22?x0?y0?15232?2?1x0?2?2y0CE?1?2??,

4232?x0?2y032?x0?2y0????

全国名校高考数学复习优质学案汇编(附详解)

[32?2?1x0?2?2y0???45 所以AF?CE?10?3?y0?x0?32?x0?2y0??????2?当直线斜率不存在时结果仍然成立.

x22.如图,在平面直角坐标系xOy中,过椭圆C: ?y2?1的左顶点A作直线l,

4与椭圆C和y轴正半轴分别交于点P, Q.

(1)若AP?PQ,求直线l的斜率;

(2)过原点O作直线l的平行线,与椭圆C交于点M,N,求证:【答案】(1)k?32(2)见解析。 【解析】

AP?AQMN2为定值.

搜索更多关于: 解析几何定值定点 专题 的文档
解析几何定值定点 专题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0jddj5yrdk5v45r56fo51lh1d7s0l10097w_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top