.
参考答案
一、选择题
1.B 2.B 3.D 4.D 5.D 二、填空题
16.2e2?1 7.e3?
318. 9.3?
x?110.e?12 11.x?0
12.5 13.y?14.?sin三、解答题
?4?1(x?1) 2?24 15.0
16.解 这是一个分段函数,f(x)在点x?0的左极限和右极限都存在.
1? limf(x)?limarctan??
x?0?x?0?x21? limf(x)?limarctan?
x?0?x?0?x2 limf(x)?limf(x)
x?0?x?0? 故当x?0时,f(x)的极限不存在,点x?0是f(x)的第一类间断点.
17.解 原式=limx?x?12x?121??limx???x???11?212xx. ??2122?2x18.解 设f(x)?arcsinx?(1?x).
由于x?0是初等函数lnf(x)的可去间断点,
1??x 故 limlnf(x)?lnlimf(x)?lnlim?arcsinx?(1?x)?
x?0x?0x?0??1?? ?ln?limarcsinx?lim(1?x)x?
x?0x?0??1x??页脚
.
?ln(0?e)?lne?1.
19.解 首先在x?0时,分别求出函数各表达式的导数,即 当x?0时,f?(x)?(xe)??e?1x?1x?xe?1x?11?2?ex(1?)
xx11? 当?1?x?0时,f?(x)??ln(x?1)??.
x?1 然后分别求出在x?0处函数的左导数和右导数,即
??(0)?lim f x?0?1?1 x?1?1x1??(0)?lime(1?)?0 f x?0?x??(0)?f ??(0),函数在x?0处不可导. 从而f ??11ex(1?) x?0??x 所以f?(x)?? ?1 x?0??x?120.解 y?sin(x?y)
y??cos(x?y)(1?y?)?cos(x?y)?y?cos(x?y) ① y????sin(x?y)(1?y?)?y??cos(x?y)?y???sin(x?y)?(1?y?) ?1?cos(x?y)?y????sin(x?y)(1?y?)2
sin(x?y)(1?y?)2 y???? ②
1?cos(x?y) 又由①解得y??cos(x?y)
1?cos(x?y)2?cos(x?y)?cos(x?y)?1?1?cos(x?y)??? 代入②得y??1?cos(x?y) ??sin(x?y) 3?1?cos(x?y)?页脚
.
321.解 先出求f(x)的一阶导数:f?(x)?4x3?6x2?4x2(x?)
233 令f?(x)?0 即4x2(x?)?0 解得驻点为x1?0,x2?.
22 再求出f(x)的二阶导数f??(x)?12x2?12x?12x(x?1).
33327时,f??()?9?0,故f()??是极小值. 222163 当x1?0时,f??(0)?0,在(??,0)内,f?(x)?0,在(0,)内f?(x)?0
当x2? 22.解 23.解 24.解 页脚
2故 x1?0不是极值点.
总之 曲线f(x)?x4?2x2只有极小值点x?32. ? x3x3?x?xx(x2?1)x2?1?x2?1??xx2?1?x?xx2?1 ? ?x3x2?1dx??(x?xxx2?1)dx??xdx??x2?1dx 12?2x2?12?d(x?1)x?1?12x2?12ln(x2?1)?C 由题设知f(x)?(xlnx)??lnx?x(lnx)??lnx?1 故?x?f(x)dx??x(lnx?1)dx ??xlnxdx??xdx
??lnx11?2dx2?2x2
?12lnx?x2??x2d(lnx)??12x2
?1lnx?x2?12?x21xdx?12x22
?12x2lnx?12?xdx?12x2
?12x2lnx?14x2?C.
? ?0k??1?x2dx?k?010??1?x2dx?k?alim1????a1?x2dx ?k?limarctanx0?a???a?k?alim???(?arctana)?k?2
.
k1 dx???1?x22?11 故 k?? 解得k?.
22? 又 ?025.解 ?
?f?f??2x?6,?3y2?12 ?x?y??2x?6?0 解方程组?得驻点A0(3,2),B0(3,?2)
26.解
27.证 页脚
?3y2?12?0又 ?A?f ??xx??2,B?f ??xy?0,C?f ??yy?6y 对于驻点A0:A??2,B?0,C?6y2xy??3??12,故B?AC?24?02? 驻点A0不是极值点.
对于驻点B0:A??2,B?0,C?6yx?3??12
y??2故 B2?AC??24?0,又A??2?0.
? 函数f(x,y)在B0(3,?2)点取得极大值 f(3,?2)?(?2)3?9?18?24?5?30
由y?x2与x?y2得两曲线的交点为O(0,0)与A(1,1) x?y2(y?0)的反函数为y?x.
? ??(x2?y)dxdy??1x112x0dx?x2(x2?y)dy??0(x2y?D2y)x2dx
??1?50?(x2?1x)?(x4?1x4)??22?dx?7 ?(213337x2?4x2?10x5)10?140? ?af(x)dxa?a0??0??x2??f(x)dx?0??dx ??a2a??a0xdx??0??0f(x)dx???dx ?13x3a?aa0?0f(x)dx??0dx
相关推荐: