【解析】
分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.
详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查, 所以属于抽样调查, 因为样本容量是50, 所以图中a=50-6-10-6-4=24, 故选A.
点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.
11.下列调查中,适宜采用普查方式的是( ) A.了解一批灯泡的寿命
B.检查一枚用于发射卫星的运载火箭的各零部件 C.考察人们保护环境的意识 D.了解全国八年级学生的睡眠时间 【答案】B 【解析】 【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可. 【详解】
解:A. 了解一批灯泡的寿命适宜采用抽样调查方式,A错误;
B. 检查一枚用于发射卫星的运载火箭的歌零部件适宜采用普查方式,B正确; C. 考察人们保护环境的意识适宜采用抽样调查方式,C错误; D. 了解全国八年级学生的睡眠时间适宜采用抽样调查方式,D错误; 故选B. 【点睛】
本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
12.下列调查中,最适合采用全面调查(普查)方式的是( ) A.对重庆市初中学生每天阅读时间的调查 B.对端午节期间市场上粽子质量情况的调查 C.对某批次手机的防水功能的调查 D.对某校九年级3班学生肺活量情况的调查 【答案】D 【解析】
【分析】 【详解】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误; B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误; D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确; 故选D.
13.12×1000=120,
∴在总体1000个数据中,数据落在54.5~57.5之间的约有120个. 故选A. 【点睛】
本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量. 同时考查统计的基本思想即用样本估计总体的应用.
14.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成( )
A.10组 B.9组 C.8组 D.7组 【答案】A 【解析】 【分析】
分析题意求组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位. 【详解】
解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1, 故可以分成10组. 故选:A. 【点睛】
本题考查的是组数的计算,属于基础题,掌握组数的计算方法是解答此题的关键,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.
15.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )
A.喜欢乒乓球的人数(1)班比(2)班多 C.喜欢羽毛球的人数(1)班比(2)班多 【答案】C 【解析】 【分析】
B.喜欢足球的人数(1)班比(2)班多 D.喜欢篮球的人数(2)班比(1)班多
根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】
解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】
本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.
16.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项( )
A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.
B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.
C.图2显示意大利当前的治愈率高于西班牙.
D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率 【答案】C 【解析】 【分析】
A中,读图1,将数据代入公式验证;B中,直接读图2比较即可;C中,治愈率=治愈人数÷患病人数,需要计算分析;D中,直接读图3可得出 【详解】
A中,现有确诊增加量为:-297,累计确诊增加量为:114,治愈增加量为:405,死亡增加量为:6,代入A中的公式,成立,A正确;
B中,美国累计确诊人数为:104661,百万人口确诊:318,德国累计确诊人数为:50871,百万人口确诊:625,美国累计确诊人数约是德国的2倍,正确.德国百万人口确诊数约是美国的2倍,正确.故B正确.;
C中,意大利治愈人数为:10950,患病人数为:86498,治愈率为0.127;西班牙治愈人数为:9357,患病人数为:65719,治愈率为:0.142.故西班牙治愈率更高,C错误; D中,从图3知,从3月16日开始,海外的病死率曲线比中国高,即高出中国,D正确 故选:C 【点睛】
本题考查图表数据的分析能力,在解题过程中需要注意,有些数据是需要计算分析的,如治愈率,切不可仅观察表面数据
17.某校八年级有1600名学生,从中随机抽取了200名学生进行立定跳远测试,下列说法正确的是( )
A.这种调查方式是普查 C.样本容量是 200 【答案】C 【解析】 【分析】
B.200名学生的立定跳远成绩是个体 D.这200名学生的立定跳远成绩是总体
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量. 【详解】
A、是抽样调查,故A不符合题意;
B、每名学生的立定跳远成绩是个体,故B不符合题意; C、样本容量是200,故C符合题意;
D、所有学生的立定跳远成绩是总体,故D不符合题意; 故选:C. 【点睛】
此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
18.下列说法中正确的是( ).
A.“打开电视,正在播放《新闻联播》”是必然事件 B.一组数据的波动越大,方差越小 C.数据1,1,2,2,3的众数是3
D.想了解某种饮料中含色素的情况,宜采用抽样调查 【答案】D 【解析】
试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D.
考点:全面调查与抽样调查;众数;方差;随机事件.
19.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如下表所示,则下列说法正确的是( ) 年级 合格人数 七年级 270 八年级 262 九年级 254
相关推荐: