《教材解读》配赠资源 版权所有,侵权必究
。 内部文件,版权追溯 1.2 矩形的性质与判定
第1课时 整体设计
教学目标
【知识与技能】
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别和联系. 2.会初步运用矩形的概念和性质解决有关问题. 【过程与方法】
1.经历探索矩形的概念和性质的过程,渗透运动联系,从量变到质变的观点. 2.通过灵活运用矩形的性质解决有关问题,渗透几何思维方法. 【情感态度与价值观】
1.通过小组合作展示活动,培养学生的合作意识和树立学习的自信心. 2.通过探究学习,培养学生严谨的推理能力,体会逻辑思维推理的价值. 教学重难点
【重点】 矩形的性质.
【难点】 矩形的性质的灵活应用. 教学准备
【教师准备】 演示活动的平行四边形框架.
【学生准备】 课前预习矩形的性质,准备矩形纸片.
教学过程
新课导入 导入一:
回答下列问题:
【问题1】 什么叫做平行四边形?它具有哪些性质?
【问题2】 想一想,这里面展示的物体都是一些什么形状的图形?
【师】 咱们中国有句古话“不以规矩,不成方圆.”“方”指的就是我们小学学过的长方形、正方形,“矩”就是古代画“方”的一种工具.到了初中阶段,我们就把长方形叫做矩形,这节课我们就来研究矩形.(板书课题)
[设计意图] 问题1温故而知新,为学习矩形的概念和性质做好铺垫;问题2通过展示学生熟悉的矩形的图片,让学生感受到矩形在我们的生活中无处不在,从而激发学生探究知识的欲望. 导入二:
《教材解读》配赠资源 版权所有,侵权必究
复习回顾:
【问题1】 平行四边形具有哪些性质? 边 角 对角线 对称性 【问题2】 菱形是特殊的平行四边形,它具有哪些性质? 边 角 对角线 对称性 菱形 今天我们继续学习另一种特殊的平行四边形——矩形,先来观看平行四边形角度变化的动画.
平行四边形
教师板书课题.
[设计意图] 通过复习,巩固平行四边形和菱形的知识,为学习矩形做好知识铺垫,通过图形变化,感受矩形与平行四边形的关系,进而导入矩形的性质和判定. 新知构建
一、矩形的定义
教师演示活动的平行四边形框架,学生观察并思考:
(1)在运动过程中四边形还是平行四边形吗?
(2)在运动过程中四边形不变的是什么?改变的是什么?
(3)在角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形? 归纳上述问题,得出矩形的定义:有一个角是直角的平行四边形叫做矩形.
[处理方式] 利用四边形的不稳定性,通过教具演示,使平行四边形的内角发生变化,学生发现在运动过程中四边形的对边仍保持相等,所以仍然是平行四边形.但是,角度是不断变化的.当有一个内角是直角时,平行四边形就演变成了矩形,从而自然地得到了矩形的定义需满足的两个条件:(1)是平行四边形;(2)有一个角是直角.定义是本节的关键点,因此观察过程不能省略.
[设计意图] 让学生观察从平行四边形到矩形的变化过程,事实上是在学生已有的平行四边形相关认知的基础上让他们认识到矩形是平行四边形,但却是特殊的平行四边形.从已有的知识出发,通过教具演示,让学生经历了矩形概念的探究过程,自然而然地给出矩形的概念. 二、矩形的性质
思路一
1.观察试验,发现问题
教师在平行四边形活动框架上,用两根橡皮筋分别固定在相对的两个顶点上,作为它的对角线,拉动一对不相邻的顶点,改变平行四边形的形状.学生观察并思考:
《教材解读》配赠资源 版权所有,侵权必究
(1)随着∠ABC的变化,两条对角线的长度是怎样变化的?
(2)当∠ABC是直角时,平行四边形变成了矩形,此时其他内角有何变化?两条对角线的长度有何关系? (注:如果教具制作有困难,可以使用几何画板软件的拖动、测量功能,会取得更好的效果,见下图)
∠ABC=63.5° ∠BAD=116.5° ∠ADC=63.5° ∠DCB=116.5° AC=7.64 cm BD=11.85 cm
∠ABC=90.0° ∠BAD=90.0° ∠ADC=90.0° ∠DCB=90.0° AC=9.97 cm BD=9.97 cm
2.明确定理,推理证明
操作、思考、交流、归纳后,教师在学生口答的基础上,引导学生猜想矩形的性质并板书: 矩形的性质1 矩形的四个角都是直角. 矩形的性质2 矩形的对角线相等.
【思考】 怎样证明你的猜想?请同学们自己完成. 已知:如图所示,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相交于点O.
《教材解读》配赠资源 版权所有,侵权必究
求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90°; (2)AC=BD.
(多媒体课件展示两个定理的已知、求证,请两位同学分别板演证明过程) 3.动手操作,完善性质 问题1
请同学们拿出准备好的矩形纸片,折一折,转一转,观察并思考以下问题: (1)矩形是不是中心对称图形?如果是,那么对称中心是什么? (2)矩形是不是轴对称图形?如果是,那么对称轴有几条?
结论:矩形是中心对称图形,它的对称中心是对角线的交点.矩形是轴对称图形,它有两条对称轴. 问题2
请你总结一下矩形有哪些性质?
学生归纳概括矩形的性质,教师提示可以从四个方面来说: 从边来说,矩形的对边平行且相等; 从角来说,矩形的四个角都是直角;
从对角线来说,矩形的对角线相等且互相平分;
从对称性来说,矩形既是轴对称图形,又是中心对称图形.
[处理方式] 让学生分组探索,教师可引导学生根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,学生通过动手测量,动脑思考,动口讨论,自主发现矩形的性质.性质定理的证明让学生上台板演,既规范了证明的书写格式,也体现了数学的严谨性.
[设计意图] 学生通过类比平行四边形的性质及观察从平行四边形到矩形的变化过程,从边、角、对角线三方面不难发现矩形的性质.学生自己讨论得出的结论会更让他们乐于接受,而方法也在此过程中渗透给了学生. 思路二
(1)想一想:(展示问题,引导学生讨论、解决)
①矩形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能举一些这样的性质吗? ②矩形是轴对称图形吗?如果是,它有几条对称轴? ③你认为矩形还具有哪些特殊的性质?与同伴交流. 结论:矩形是轴对称图形,它有两条对称轴. (2)问题:矩形的边具有怎样的性质? (学生思考、回答)
结论:对边平行且相等.(具有平行四边形的边所具有的边的性质)
(3)问题:矩形的角除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质? (学生思考、回答)
结论:矩形的四个角都是直角.
相关推荐: