(2)Èôµ±x¡Ê(1£¬£«¡Þ)ʱ£¬f(x)>0£¬ÇóaµÄȡֵ·¶Î§¡£ ½âÎö (1)f(x)µÄ¶¨ÒåÓòΪ(0£¬£«¡Þ)¡£µ±a£½4ʱ£¬
1
f(x)£½(x£«1)lnx£4(x£1)£¬f¡ä(x)£½lnx£«x£3£¬f¡ä(1)£½£2£¬f(1)£½0¡£
ÇúÏßy£½f(x)ÔÚ(1£¬f(1))´¦µÄÇÐÏß·½³ÌΪ2x£«y£2£½0¡£ a?x£1?
(2)µ±x¡Ê(1£¬£«¡Þ)ʱ£¬f(x)>0µÈ¼ÛÓÚlnx£>0¡£
x£«1a?x£1?
Éèg(x)£½lnx££¬Ôò
x£«1
x2£«2?1£a?x£«112a
g¡ä(x)£½x££½£¬g(1)£½0¡£
?x£«1?2x?x£«1?2
(¢¡)µ±a¡Ü2£¬x¡Ê(1£¬£«¡Þ)ʱ£¬x2£«2(1£a)x£«1¡Ýx2£2x£«1>0£¬¹Êg¡ä(x)>0£¬g(x)ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬Òò´Ëg(x)>0£»
(¢¢)µ±a>2ʱ£¬Áîg¡ä(x)£½0µÃ
x1£½a£1£?a£1?2£1£¬x2£½a£1£«?a£1?2£1¡£
ÓÉx2>1ºÍx1x2£½1µÃx1<1£¬¹Êµ±x¡Ê(1£¬x2)ʱ£¬g¡ä(x)<0£¬g(x)ÔÚ(1£¬x2)Éϵ¥µ÷µÝ¼õ£¬´Ëʱg(x) ×ÛÉÏ£¬aµÄȡֵ·¶Î§ÊÇ(£¡Þ£¬2]¡£ ´ð°¸ (1)2x£«y£2£½0 (2)(£¡Þ£¬2] 10£®(2015¡¤È«¹ú¾í¢ñ)É躯Êýf(x)£½e2x£alnx¡£ (1)ÌÖÂÛf(x)µÄµ¼º¯Êýf¡ä(x)ÁãµãµÄ¸öÊý£» 2 (2)Ö¤Ã÷£ºµ±a>0ʱ£¬f(x)¡Ý2a£«alna¡£ ½âÎö (1)f(x)µÄ¶¨ÒåÓòΪ(0£¬£«¡Þ)£¬ a f¡ä(x)£½2e£x¡£ 2x µ±a¡Ü0ʱ£¬f¡ä(x)>0£¬f¡ä(x)ûÓÐÁãµã£» a µ±a>0ʱ£¬Éèu(x)£½e£¬v(x)£½£x£¬ 2x a ÒòΪu(x)£½eÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬v(x)£½£xÔÚ(0£¬£«¡Þ)ÉÏ 2x µ¥µ÷µÝÔö£¬ ËùÒÔf¡ä(x)ÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝÔö¡£ a1 ÓÖf¡ä(a)>0£¬µ±bÂú×ã00ʱ£¬f¡ä(x)´æÔÚΨһÁãµã¡£ (2)Ö¤Ã÷£ºÓÉ(1)£¬¿ÉÉèf¡ä(x)ÔÚ(0£¬£«¡Þ)ÉϵÄΨһÁãµãΪx0£¬µ±x¡Ê(0£¬x0)ʱ£¬f¡ä(x)<0£» µ±x¡Ê(x0£¬£«¡Þ)ʱ£¬f¡ä(x)>0¡£ ¹Êf(x)ÔÚ(0£¬x0)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(x0£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ ËùÒÔµ±x£½x0ʱ£¬f(x)È¡µÃ×îСֵ£¬×îСֵΪf(x0)¡£ ÓÉÓÚ a2x 2e0£x£½0£¬ 0 a22 ËùÒÔf(x0)£½2x£«2ax0£«alna¡Ý2a£«alna¡£ 02 ¹Êµ±a>0ʱ£¬f(x)¡Ý2a£«alna¡£ ´ð°¸ (1)µ±a>0ʱ£¬´æÔÚΨһÁãµã (2)¼û½âÎö (ʱ¼ä£º20·ÖÖÓ) 1£®(2017¡¤ÌÆÉ½Ä£Äâ)ÒÑÖªº¯Êýf(x)£½a(tanx£«1)£ex¡£ (1)Èôº¯Êýf(x)µÄͼÏóÔÚx£½0´¦µÄÇÐÏß¾¹ýµã(2,3)£¬ÇóʵÊýaµÄÖµ£» ¦Ð?? ?(2)¶ÔÈÎÒâx¡Ê0£¬2?£¬²»µÈʽf(x)¡Ý0ºã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§¡£ ??½âÎö (1)ÒòΪf(x)£½a(tanx£«1)£ex£¬ a ËùÒÔf¡ä(x)£½cos2x£ex£¬ ËùÒÔf¡ä(0)£½a£1£¬ ÓÖf(0)£½a£1£¬ÇÒf(x)µÄͼÏóÔÚx£½0´¦µÄÇÐÏß¾¹ýµã(2,3)£¬¹Êa?a£1?£3£1£½£¬ 0£2 ¡àa£½2¡£ ex (2)ÓÉf(x)¡Ý0µÃa¡Ý£¬ tanx£«1ex Áîg(x)£½£¬ tanx£«1 extanx?1£tanx? Ôòg¡ä(x)£½£¬ ?tanx£«1?2¦Ð????0£¬µ±x¡Ê4?ʱ£¬g¡ä(x)>0£» ? ?¦Ð¦Ð? µ±x¡Ê?4£¬2?ʱ£¬g¡ä(x)<0£¬ ? ? ´ð°¸ (1)a£½2 (2) 2£®(2016¡¤ËÄ´¨¸ß¿¼)É躯Êýf(x)£½ax2£a£lnx£¬ÆäÖÐa¡ÊR¡£ (1)ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ£» 1 (2)È·¶¨aµÄËùÓпÉÄÜȡֵ£¬Ê¹µÃf(x)>x£e1£xÔÚÇø¼ä(1£¬£«¡Þ)ÄÚºã³ÉÁ¢(e£½2.718¡Îª×ÔÈ»¶ÔÊýµÄµ×Êý)¡£ 2 12ax£1 ½âÎö (1)f¡ä(x)£½2ax£x£½x(x>0)¡£ µ±a¡Ü0ʱ£¬f¡ä(x)<0£¬f(x)ÔÚ(0£¬£«¡Þ)ÄÚµ¥µ÷µÝ¼õ¡£ 1 µ±a>0ʱ£¬ÓÉf¡ä(x)£½0£¬ÓÐx£½¡£ 2a 1??0£¬??ʱ£¬f¡ä(x)<0£¬f(x)µ¥µ÷µÝ¼õ£» ´Ëʱ£¬µ±x¡Ê 2a?? ?1? £¬£«¡Þ?ʱ£¬f¡ä(x)>0£¬f(x)µ¥µ÷µÝÔö¡£ µ±x¡Ê?2a?? 11 (2)Áîg(x)£½x£x£1£¬s(x)£½ex£1£x¡£ eÔòs¡ä(x)£½ex£1£1¡£ ¶øµ±x>1ʱ£¬s¡ä(x)>0£¬ ËùÒÔs(x)ÔÚÇø¼ä(1£¬£«¡Þ)ÄÚµ¥µ÷µÝÔö¡£ ÓÖÓÉs(1)£½0£¬ÓÐs(x)>0£¬ ´Ó¶øµ±x>1ʱ£¬g(x)>0¡£ µ±a¡Ü0£¬x>1ʱ£¬f(x)£½a(x2£1)£lnx<0¡£ ¹Êµ±f(x)>g(x)ÔÚÇø¼ä(1£¬£«¡Þ)ÄÚºã³ÉÁ¢Ê±£¬±ØÓÐa>0¡£ 11 µ±01£¬ 2a ?1??1????>0£¬ ÓÉ(1)ÓÐf ËùÒÔ´Ëʱf(x)>g(x)ÔÚÇø¼ä(1£¬£«¡Þ)ÄÚ²»ºã³ÉÁ¢¡£ 1 µ±a¡Ý2ʱ£¬Áîh(x)£½f(x)£g(x)(x¡Ý1)¡£µ±x>1ʱ£¬h¡ä(x)£½2ax£ 32x£2x£«1x£2x£«1111111£x >>0¡£ x£«x2£e>x£x£«x2£x£½x2x2Òò´Ë£¬h(x)ÔÚÇø¼ä(1£¬£«¡Þ)ÄÚµ¥µ÷µÝÔö¡£ ÓÖh(1)£½0£¬ËùÒÔµ±x>1ʱ£¬h(x)£½f(x)£g(x)>0£¬ ¼´f(x)>g(x)ºã³ÉÁ¢¡£ ?1? ×ÛÉÏ£¬a¡Ê?2£¬£«¡Þ?¡£ ??
Ïà¹ØÍÆ¼ö£º