n(n-1)n2+3n(2)若q=1,则Sn=2n+=.
22(n-1)(n+2)当n≥2时,Sn-bn=Sn-1=>0,故Sn>bn.
2-n2+9nn(n-1)11若q=-,则Sn=2n+ (-)=.
4222(n-1)(10-n)当n≥2时,Sn-bn=Sn-1=,
4故对于n∈N+,当2≤n≤9时,Sn>bn;当n=10时,Sn=bn;当n≥11时,Sn<bn. 19.证明:∵an+1=Sn+1-Sn,an+1=
n+2Sn, n∴(n+2)Sn=n(Sn+1-Sn),整理得nSn+1=2(n+1) Sn, 所以故{
Sn+12S=n. n+1nSn}是以2为公比的等比数列. n20.证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,即4 a1q6=a1+3a1q3, 变形得(4q3+1)(q3-1)=0, ∴q3=-
1或q3=1(舍). 4a1(1?q6)S611?q31?q 由===;
12a1(1?q3)12S316121?qa1(1?q12)S?S6S11?q6
12=12-1=-1=1+q-1=;
S6S6a1(1?q6)161?qS?S6S 得6=12.
S612S3 ∴12S3,S6,S12-S6成等比数列.
第 9 页 共 9 页
相关推荐: