5553sinA3532tanA4?24 所以tanA==×=,tan2A=?3cosA54471?tan2A1?()242?又tanB=2, 所以tan2B=
2tanB2?24???. 2231?tanB1?2244?tan2A?tan2B4473??. 于是tan(2A+2B)=
2441?tan2Atan2B1771??(?)73例3、求cos36°cos72°.的值.
2sin36?cos36??cos72?2sin72?cos72?1?解:原式==.
42sin36?4sin36?113?例4.已知cosα=,cos(α-β)=,且0<β<α<,
7142(1)求tan2α的值; (2)求β.
1431?. 解:(1)由cosα=,0<α<,得sinα=1?cos2a=1?()2?7772∴tanα=
2tana2?4383sina437?=43.于是tan2α=???. =2271471?tana1?tanacosa(2)由0<α<β<
??,得0<α-β<. 22133313. ,∴sin(α-β)=1?cos2(a??)?1?()2?141414又∵cos(α-β)=
由β=α-(α-β),得
------------------------------------------------------------------------------------------------------------------------------2 ---------------
cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=∴β=
11343331?×+=. 7147142?. 3例5 化简3cosx?sinx 解:原式=2(31???cosx?sinx)?2(sincosx?cossinx)?2sin(?x) 22333或解:原式=2(coscosx?sinsinx)?2cos(?x)
666????5???y?cos(?x)?cos(?x)的值域 例6 已知x??,求函数0,???2?1212解: y?cos(?2??12?x)?cos(5???x)?2cos(?x) 123633????? ∵x???0,? ∴???x?
1? ∴cos(?x)???2,1? ∴函数3???y
?2?的值域是?,2?
???2?例7 已知sin(?x)?4??cos2x5 ,0?x? 求的值
?413cos(?x)4解:∵sin(?x)?4????55??(?x)?sin(?x)? cos? ?2?441313??即:cos(?x)?4?5 13∵0?x??4 ∴
12 13?4?x??4??2
从而si(?x)?4??(?x)?cos(?x)而cos2x?cos??4??13?13?13?13?169 4??120cos2x24?169?∴ ?513cos(?x)413??125125120例8已知sin(2???)?2sin??0 求证tan?=3tan(?+?) 证:由题设:sin[(???)??]?2sin[??(???)]
即sin(???)cos??cos(???)sin??2sin?cos(???)?2cos?sin(???) ∴3sin(???)cos??sin?cos(???)
------------------------------------------------------------------------------------------------------------------------------3 ---------------
∴tan?=3tan(?+?) 例9 已知
?2?????3?4,cos(???)?123,sin(???)??,求sin2?的值 135 解:∵cos(???)? ∴0????? ∴???????3?12 ?0 ?????2413?4 ∴sin(???)?
455 133?2又sin(???)?? ∴cos(???)??
∴sin2?=sin[(???)?(???)]?sin(???)cos(???)?c0s(???)sin(???)
3124556 =??????
5135136535例10求证:tan20°tan30°+tan30°tan40°+tan40°tan20°=1
选题意图:考查两角和与差的正切变形公式的应用 证明:左端=
3(tan20??tan40?)?tan40??tan20? 3说明:可在△ABC中证明tanA2tanB2?tanB2tanC2?tanC2tanA2?1 课时对点练
一、选择题
π??x-?-1是 1.函数y=2cos?
4??
2 ( )
A.最小正周期为π的奇函数 B.最小正周期为π的偶函数 π
C.最小正周期为的奇函数
2π
D.最小正周期为的偶函数
2
( )
2.tan 70°+tan 50°-3tan 70°·tan 50°=
------------------------------------------------------------------------------------------------------------------------------4 ---------------