轮式移动机器人的设计报告
图3.1 AT89S52引脚图
AT89C52为8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。
8
轮式移动机器人的设计报告
3.2 红外避障模块的电路设计
3.2.1 LM393双电压比较器集成电路
图3.2.1-1 LM393
LM393是高增益,宽频带器件,像大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡。这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙,电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入-输出寄生电容耦合是有助的。减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡,除非利用滞后,否则直接插入IC(集成电路板integrated circuit,缩写:IC) 并在引脚上加上电阻将引起输入-输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要。
图3.2.1-2
9
轮式移动机器人的设计报告
特点:
工作温度范围:0°C -- +70°C
SVHC(高度关注物质):No SVHC (18-Jun-2010) 器件标号:393
工作电源电压范围宽,单电源、双电源均可工作,单电源: 2~ 36V, 双电 源:±1~±18V; 消耗电流小, ICC=0.8mA; 输入失调电压小, VIO=±2mV;
共模输入电压范围宽, VIC=0~VCC-1.5V; 输出与TTL,DTL,MOS,CMOS 等兼容; 输出可以用开路集电极连接“或”门; 表面安装器件:表面安装 功能:
输出负载电阻能衔接在可允许电源电压范围内的任何电源电压上,不受 Vcc端电压值的限制,输出部分的陷电流被可能得到的驱动和器件的β值所限制.当达到极限电流(16mA)时,输出晶体管将退出而且输出电压将很快上升。输出饱和电压被输出晶体管大约60ohm 的γSAT限制。当负载电流很小时,输出晶体管的低失调电压(约1.0mV)允许 输出箝位在零电平。
10
轮式移动机器人的设计报告
3.2.2红外对管工作原理
图3.2.2-1 图3.2.2-2
上图中,红外光电管有两种,一种是无色透明的LED,此为发射管,它通电后能够产生人眼不可见红外光,另一部分为黑色的接收部分,它内部的电阻会随着接收到红外光的多少而变化。
无论是一体式还是分离式,其检测原理都相同,由于黑色吸光,当红外发射管照射在黑色物体上时反射回来的光就较少,接收管接收到的红外光就较少,表现为电阻大,通过外接电路就可以读出检测的状态;同理,当照射在白色表面时发射的红外线就比较多,表现为接收管的电阻较小,此时通过外接电路就可以读出另外一种状态,如用电平的高低来描述上面两种现象就会出现高低电平之分,也就是会出现所谓的0和1两种状态,此时再将此送到单片机的I/O口,单片机就可以判断是黑白路面,进而完成相应的功能,如循迹、避障等。
11
相关推荐: