∴小亮跑步返回时的速度大于170米/分. ··················································· 8分
25.(本题满分9分)
(1)证明:在等腰直角三角形ABC和等腰直角三角形ADE中,
∵AB=AC,∠BAC=∠DAE =90°,AD=AE. ∴∠BAD=∠CA E. ··························· 2分 ∴△ABD≌△ACE. ························· 3分 (2)∵∠DAE =90°,AD=AE.
B
F D C E
A ∴由勾股定理可得DE=2AD.
∴△ADE周长等于AD+AE+DE =2AD?2AD=(2?2)AD. ····················· 4分 ∴当AD最小时△ADE周长最小.
由垂线段最短得,当AD⊥BC时AD最小. ·················································· 5分 ∵AB=AC=4,∠BAC =90°,
∴此时 BD?1BC?1AB2?AC2?1?42?22.
222∴当BD?22时,△ADE的周长最短. ····················································· 6分 (3)若△ADF是等腰三角形,则有三种可能,分别为:①AD=AF,②DF=AF,③AD= DF.
①当AD=AF时, ∠AFD=∠ADF=45°,
∴∠DAF =90°=∠DAE,
∴AE与 AC重合,AD与AB重合.
∴BD=0. ··················································· 7分 ②当DF=AF时,
∴∠DAF=∠ADF=45°=1∠BAC.
2∴BD?1BC?22. ······························· 8分
2③当AD= DF时,
∵∠B +∠BAD +∠ADB =180°, ∠ADF+∠CDF+∠ADB =180°, ∴∠B +∠BAD=∠ADF+∠CDF. ∵∠B=∠ADF=∠DCF =45°, ∴∠BAD=∠CDF. ∴△ABD≌△DCF. ∴CD=AB=4. ∴BD?42?4.
综上所述,当BD=0,22或42?4时,△ADF是等腰三角形. ······················· 9分
B
D F C
A E
相关推荐: