专题类型突破
专题五 二次函数综合题
类型一 线段、周长问题
(2018·宜宾中考改编)在平面直角坐标系xOy中,已知抛物线的顶点坐标1
为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A,B两点,直线
4l为y=-1.
(1)求抛物线的解析式;
(2)在y轴上是否存在一点M,使点M到点A,B的距离相等?若存在,求出点M的坐标;若不存在,请说明理由;
(3)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由;
(4)设点S是直线l的一点,是否存在点S,使的SB-SA最大,若存在,求出点S的坐标.
【分析】 (1)设顶点式y=a(x-2)2,将点(4,1)代入即可求a的值,得出抛物线的解析式;
(2)联立直线AB与抛物线解析式得到点A与点B的坐标,设出点M的坐标为(0,m),利用等式MA2=MB2,求出点M的坐标;
(3)利用最短线段思想,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值.求出直线AB′解析式后,联立直线l得出点P坐标;
(4)由最短线段思想可知,当S,A,B三点共线时,SB-SA取得最大值. 【自主解答】
1.(2018·广西中考)如图,抛物线y=ax2-5ax+c与坐标轴分别交于点A,C,E三点,其中A(-3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标; (2)当△CMN是直角三角形时,求点M的坐标; (3)试求出AM+AN的最小值.
类型二 图形面积问题
(2018·菏泽中考)如图,在平面直角坐标系中,抛物线y=ax2+bx-5交y轴于点A,交x轴于点B(-5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.
(1)求此抛物线的解析式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;
(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
【分析】 (1)根据题意可以求得a,b的值,从而可以求得抛物线的解析式; (2)根据题意可以求得AD的长和点E到AD的距离,从而可以求得△EAD的面积; (3)根据题意可以求得直线AB的函数解析式,再根据题意可以求得△ABP的面积,然后根据二次函数的性质即可解答本题. 【自主解答】
12
2.如图,已知抛物线y=x+bx+c经过△ABC的三个顶点,其中点A(0,1),
3点B(-9,10),AC∥x轴,点P是直线AC下方抛物线上的动点. (1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标;若不存在,请说明理由.
类型三 抛物线上架构的三角形问题
(2018·怀化中考改编)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②在数轴上是否存在点M,使得△ACM是以AC为底的等腰三角形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.
【分析】 (1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;
(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于点M,利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标; (3)①过点C作AC的垂线交抛物线于另一点P,利用两直线垂直一次项系数互为负倒数求出直线PC的解析式,当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.
②因为△ACM是以AC为底的等腰三角形,得出MA2=MB2,然后分类讨论点M在x轴、y轴时的两种情况,进而求出点M的坐标即可. 【自主解答】
是否存在一点,使之与另外两个定点构成等腰三角形(直角三角形)的问题:首先弄清题意(如等腰三角形:若某边为底边,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况);其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点.
3.(2018·临沂中考)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,
tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直x轴于点D,交线段1
AB于点E,使PE=DE.
2①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
类型四 抛物线上架构的四边形问题
(2018·齐齐哈尔中考)综合与探究
相关推荐: