第一范文网 - 专业文章范例文档资料分享平台

2021学年中考数学复习专题讲座四探究型问题 

来源:用户分享 时间:2025/7/25 22:27:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

25.(2012?日照)在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.(Ⅰ)探究新知

如图①,⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.(1)求证:内切圆的半径r1=1;(2)求tan∠OAG的值;(Ⅱ)结论应用

(1)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2的值;

(2)如图③,若半径为rn的n个等圆⊙O1、⊙O2、…、⊙On依次外切,且⊙O1与AC、AB相切,⊙On与BC、AB相切,⊙O1、⊙O2、…、⊙On均与AB相切,求rn的值.

26.(2012?衢州)课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:

(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给

予证明.

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);

第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;

第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.

(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

27.18.(2012?连云港)已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线的长能否相等,为什么?

问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

,DCPQ的长PQ问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

2021学年中考数学复习专题讲座四探究型问题 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0wa4n5cerr3qhtz4wh2h1h1yk7phau00sgs_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top