第一范文网 - 专业文章范例文档资料分享平台

最新人教版六年级下册数学教案(全册完整)

来源:用户分享 时间:2025/7/5 23:46:03 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第三课时

圆柱的表面积练习课

教学内容:练习二余下的练习. 教学目标: 知识与技能:

会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题. 情感态度与价值观:

培养学生良好的空间观念和解决简单的实际问题的能力. 教学重点:

运用所学的知识解决简单的实际问题. 教学难点:

运用所学的知识解决简单的实际问题. 教学过程: 一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2) 3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积.(第②题已知圆柱的底面周长,对于求侧面积较有利.但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)

二、实际应用 1、练习二第13题

(1)、复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6

(2)、学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演.

2、练习二第7题

(1)、用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积) (2)、学生独立完成这道题,集体订正. 3、练习二第9题

11 / 19

(1)、学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)、指名板演,其他学生独立完成于课堂练习本上. 4、练习二第16题

(1)、学生读题理解题意后尝试独立解题.

(2)、集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度.

5、练习二第19题

(1)、学生小组讨论:可以漆色的面有哪些?

(2)、通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积.因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积.

(3)、提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数.

三、布置作业

《冠魔新干线》第5页的练习 板书:

圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6

第四课时 圆柱的体积

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1-4题.

教学目标: 知识与技能:

初步学会用转化的数学思想和方法,解决实际问题的能力 过程与方法:

12 / 19

通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积.

情感态度与价值观:

渗透转化思想,培养学生的自主探索意识. 教学重点:掌握圆柱体积的计算公式. 教学难点:圆柱体积的计算公式的推导. 教学过程: 一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求.

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式.

二、新课

1、圆柱体积计算公式的推导.

(1)、用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积.(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——教具演示)

(2)、由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了.

(3)、通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高.(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

2、教学补充例题

(1)、出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米.它的体积是多少?

(2)、指名学生分别回答下面的问题: ① 、这道题已知什么?求什么? ② 、能不能根据公式直接计算?

③ 、计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的. ①、V=Sh

50×2.1=105(立方厘米)

13 / 19

答:它的体积是105立方厘米. ②、2.1米=210厘米 V=Sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米. ③、50平方厘米=0.5平方米 V=Sh

0.5×2.1=1.05(立方米) 答:它的体积是1.05立方米. ④、50平方厘米=0.005平方米 V=Sh

0.005×2.1=0.0105(立方米) 答:它的体积是0.0105立方米.

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方. (4)、做第20页的“做一做”.

学生独立做在练习本上,做完后集体订正. 3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

4、教学例6

(1)、出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积) (2)、学生尝试完成例6.

①、 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) ②、 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

1、做第21页练习三的第1题. 2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积.

四、布置作业

《冠魔新干线》第6页的练习 板书:

14 / 19

圆柱的体积=底面积×高 V=Sh或V=πr2h

例6:①、 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 、杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

第五课时

圆柱的体积练习课

教学内容:

教材第21、22页的练习三 教学目标:

知识与技能:使学生能够运用公式正确地计算圆柱的体积和容积.

过程与方法:初步学会用转化的数学思想和方法,解决实际问题的能力 情感态度与价值观:渗透转化思想,培养学生的自主探索意识. 教学重点:掌握圆柱体积的计算公式.

教学难点:灵活应用圆柱的体积公式解决实际问题. 教学过程: 一、复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高.

长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh. 2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演. 二、解决实际问题 1、练习三第7题.

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成. 2、练习三第5题.

(1)、指导学生变换公式:因为V=Sh,所以h=V÷S.也可以列方程解答. (2)、学生选择喜爱的方法解答这道题目. 3、练习三第8题.

(1)、学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱. (2)、在充分理解题意后学生独立完成,集体订正. 4、练习三第9、10题

(1)、学生独立审题,完成9、10两题.

15 / 19

最新人教版六年级下册数学教案(全册完整).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0ymkd011ox1is530855j3blzb1bwa600hlm_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top