第一范文网 - 专业文章范例文档资料分享平台

【附5套中考模拟试卷】广西省柳州市2019-2020学年中考数学一模试卷含解析

来源:用户分享 时间:2025/7/31 6:15:19 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

又∵AB是⊙O的直径,∴∠ADB=90°, ∴∠ADO+∠ODB=90°,

∴∠ADO+∠CDA=90°,即∠CDO=90°, ∴OD⊥CD.

∵OD是⊙O的半径, ∴CD是⊙O的切线;

(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,

BC=6,∴CD=4.

∵CE,BE是⊙O的切线, ∴BE=DE,BE⊥BC, ∴BE2+BC2=EC2, 即BE2+62=(4+BE)2, 解得BE=.

24. (Ⅰ)68°(Ⅱ)56°【解析】 【分析】

(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题. 【详解】

(Ⅰ)∵四边形ABED 圆内接四边形, ∴∠A+∠DEB=180°, ∵∠CED+∠DEB=180°, ∴∠CED=∠A, ∵∠A=68°, ∴∠CED=68°. (Ⅱ)连接AE.

∵DE=BD,

??BE?, ∴DE∴∠DAE=∠EAB=∵AB是直径, ∴∠AEB=90°, ∴∠AEC=90°,

∴∠C=90°=56° ﹣∠DAE=90°﹣34°

1∠CAB=34°, 2

【点睛】

本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题. 25.x>?1 【解析】

试题分析:按照解一元一次不等式的步骤解不等式即可. 试题解析:3x?1>2x?2,

3x?2x>?2?1, x>?1.

解集在数轴上表示如下

点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1. 26.(1)见解析;(2)S四边形ADOE =23. 【解析】 【分析】

(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.

(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,

求出∠DCA=60°,求出AD=23.根据面积公式SΔADC,即可求解. 【详解】

(1)证明:∵矩形ABCD, ∴OA=OB=OC=OD. ∵平行四边形ADOE, ∴OD∥AE,AE=OD. ∴AE=OB.

∴四边形AOBE为平行四边形. ∵OA=OB,

∴四边形AOBE为菱形. (2)解:∵菱形AOBE, ∴∠EAB=∠BAO. ∵矩形ABCD, ∴AB∥CD.

∴∠BAC=∠ACD,∠ADC=90°. ∴∠EAB=∠BAO=∠DCA. ∵∠EAO+∠DCO=180°, ∴∠DCA=60°. ∵DC=2, ∴AD=23. ∴SΔADC=

1?2?23?23. 2∴S四边形ADOE =23. 【点睛】

考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强. 27.(1)n=2;y=【解析】 【分析】

(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;

(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数

12572282874t;当t=2时,p有最大值x﹣x﹣1; (2)p=?t?;(3)6个,或;

24555123的最值问题解答;

(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决. 【详解】 解:

(1)∵直线l:y=x+m经过点B(0,﹣1), ∴m=﹣1,

∴直线l的解析式为y=x﹣1, ∵直线l:y=x﹣1经过点C(4,n), ∴n=×4﹣1=2,

∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),

∴,

解得,

∴抛物线的解析式为y=x2﹣x﹣1; (2)令y=0,则x﹣1=0, 解得x=,

∴点A的坐标为(,0), ∴OA=,

在Rt△OAB中,OB=1, ∴AB=∵DE∥y轴, ∴∠ABO=∠DEF,

在矩形DFEG中,EF=DE?cos∠DEF=DE?DF=DE?sin∠DEF=DE?

=DE,

DE,

=DE,

=

=,

∴p=2(DF+EF)=2(+)DE=∵点D的横坐标为t(0<t<4),

【附5套中考模拟试卷】广西省柳州市2019-2020学年中考数学一模试卷含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0zpq8946w957eja0pqkz5136q5t3m0006sx_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top