第一范文网 - 专业文章范例文档资料分享平台

五年级下数学思维训练教材[1]

来源:用户分享 时间:2025/12/9 4:48:58 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

3.一个棱长6分米的正方体容器,装满了水。现将正方体容器里的水倒人一个长12分米,宽6分米,高5分米的长方体水槽中,求现在长方体水槽中水面到水槽口的距离。

4.现在把铁块轻轻向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?

5.一个长方体水箱,从里面量长8分米,宽6分米。先倒入165升水,再浸入一块棱长3分米的正方体铁块,这时水面离水箱口1分米。问:这个水箱的容积是多少?

6.在一个长15分米,宽12分米的长方体容器中,水深10分米。如果在水中浸入一个棱长是30厘米的正方体铁块,那么,容器中水深多少分米?

7.有大、中、小三个底面是正方形的水池,它们底面的边长分别是5米、3米、2米,把两堆碎石分别沉人中、小水池的水里,两个水池的水面分别升高6厘米和4厘米。如果将这两堆碎石都沉人大水池的水里,大水池的水面升高多少厘米?

8.一个长方体容器里面装有水,一块棱长24厘米的正方体铁块浸没在水中。现将铁块取出,水面下降18厘米;如果将一个长18厘米,宽16厘米,高12厘米的长方体铁块浸入水中:水面将上升多少厘米?

9.现在有大、中、小三个铁球,一个装满水的长方体容器。第一次把小球浸入水中;第二次把小球取出,把中球浸入水中;第三次取出中球,把小球和大球一起浸入水中。已知每次从容器中溢出水量的情况是:第二次是第一次的3倍,第三次是第一次的2.5倍。问:大球体积是小球的多少倍?

11.棱长为1米的2100个正方体围成一个实心的长方体,它的高为10米,长和宽都大于高。问:它的长和宽各为多少米?

12.在一个长方体蓄水池里放进一块长和宽都是5厘米的长方体铁块,如果把它全部放入水里,池里水面就上升9厘米,如果把水中的铁块露出8厘米,这时池里的水面就下降4厘米。问:这个铁块的体积是多少立方厘米?

第五讲 列方程解题

有数量关系比较复杂的应用题,特别是需要逆向思维的应用题,运用算术方法解答比较困

难,如果列方程解答,通过设未知数,把未知数当作已知数来考虑数量

关系,抓住数量之间的相等关系,列出方程式解答就比较容易了。

例题选讲

例1:御苑小学五(3)班的同学合买一件生日礼物送给班主任。如果每人出8元,就多84元,如果每人出6元,那么就少12元,御苑小学五(3)班有多少名学生?

【分析与解答】从给出的条件分析,用算术方法解答问题有些困难,似乎数量关系不明显,但深入分析可以看出同学们买的是同一件生日礼物,因比价格是一定的,即每人出8元表示的总价与每人出6元表示的总价相等,可以列出以下方程式解答。 解:设御苑小学五(3)班有x名学生。 8x-84=6x+12 8x一6x=12+84 2x=96 x=48

答:御苑小学五(3)班有48名学生。

例2:胜利大队粮库里的大米是面粉的2倍,现在用卡车运走,每辆卡车装4吨大米和3吨面粉,当面粉运完时,还剩2 0吨大米,粮库里原来有大米和面粉共多少吨?

【分析与解答】这道题的未知数量比较多:有大米、面粉的重量和卡车的数量,那么设哪个未知数为x比较合适呢?我们仔细分析一下等量关系,容易看出运大米的卡车数量与运面粉的卡车数量相等,如果设面粉有x吨,则大米有2x吨,根据卡车数量相等可以列出方程(2x一20)÷4=x÷3再进一步分析已知条件,可以看出另一个等量关系,即大米的重量等于面粉重量的2倍。我们设有x辆卡车,根据等量关系可列出方程:4x+20=3x×2比较两种方法,发现后一种方法列出的方程式比较容易解答。 解:设有x辆卡车。 4x+20—3z×2 4x+20=6x x=10

(4+3)×10+20=90(吨)

答:粮库里原来有大米和面粉共90吨。

练习与思考

1.爸爸带一些钱去买酸奶,如果买1 O瓶就剩下4元,如果买12瓶同样的酸奶则差5.2元。问:每瓶酸奶多少元?爸爸带了多少钱?

7.甲每分钟走‘50米,乙每分钟走60米,丙每分钟走70米,甲、乙从A地出发,丙从B地出发,丙遇到乙以后2分钟又遇到甲,求A、B两地的距离。

8.甲、乙两个书店存书册数相等,甲书店售出2000册,乙书店购入1000册,这时乙书店的册数是甲书店的2倍。问:甲、乙两书店原来共存书多少册?

9.在一次数学竞赛中,甲队的平均分为75分,乙队的平均分为73分,两队全体同学的平均分为73.5分,并且乙队比甲队多6人,那么乙队有多少人?

10.如图所示的是由九个正三角形拼成的六边形,其中最小的正三角形(图中有阴 影的小三角形)的边长为1,求此六边形的周长。

第六讲 假设法解题

“假设法”是解决问题常用的一种思维方法,是指在解决问题的过程中,根据题目的条件或结论作出某种假设,然后根据假设进行推算,当出现矛盾时,则分析矛盾产生的原因,并对照已知条件进行适当调整,最后找到解决问题的方法。

例题选讲

例1:有5元和10元的邮票共20张,总面值125元。问:5元的和10元的邮票各多少张?【分析与解答】假设20张邮票都是10元的,总面值应该是10×20一200(元),而实际上只有125

元,实际比假设少200—125—75(元),仔细分析一下为什么比假设少75元呢?原因就是把5元的邮票当作10元算的、,每张就多算10-5=

5(元),因此可以求出5元的邮票张数75÷5=15(张)则10元的邮票张数为20—15=5(张)。 解:(10×20—125)÷(10一5) =75÷5=15(张)??5元的邮票张数 20-15=5(张)??10元的邮票张数

答:5元的邮票15张,10元的邮票5张。

请同学想想如果假设2张邮票都是5元的.应该如何解答呢?

例2:中央百货公司委托搬运公司送1000只茶杯,双方签订合同每只运费是O.3元如果打破1只,不但不付运费,而且还要照价赔偿1.5元。结果搬运公司共得运费291元。问:搬运公司在搬运过程中打破了几只茶杯?

【分析与解答】 假设在搬运过程中没有茶杯被打破,那么应该得运费O.3 x 1000=300(元),而实际

上却少得了运费(300—291)=9(元),原因是打破了几只茶杯,每打破1只不但拿不到运费,还要赔偿,所以打破1只就损失:0.3+1.5=1.8(元),因此在搬运过程中打破了9÷1.8=5(只)。 解:(O.3X1000—291)÷(O.3+1.5) =9÷1.8 =5(只)

答:在搬运过程中打破了5只茶杯。

练习与思考

1.笼中共有鸡兔100只,鸡兔共有280只脚。问:鸡兔各有多少只?

2.某搬运站为某商店运800只花瓶,运费为每只3元,如果损坏一只,不但不给运费还要照价赔偿5元,结果搬运站共得运费2352元。问:搬运公司在搬运过程中打破几只花瓶?

3.松鼠爸爸采松子,晴天可以采30个,雨天只能采20个,它一连几天共采了240个松子,平均每天采24个。问:这几天当中有几个晴天?几个雨天?

4.甲、乙两人进行投飞镖比赛,规定每中一次记10分,脱靶一次扣6分,两人各投l0次,共得152分,其中甲比乙多16分。问:甲、乙两人各投中几次?

5.蜘蛛有8只脚,没有翅膀,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀,现在这三种小动物共78只脚,13对翅膀。问:每种小动物各有几只?

6.甲仓库存粮是乙仓库的2倍,甲仓库每天运出40吨,乙仓库每天运出30吨,若干天后,乙仓库的粮食运完了,甲仓库还有80吨。问:甲、乙两个仓库原来各有粮食多少吨?

7.一堆硬币:面值为1分、2分、5分三种,其中1分的个数是2分的ll倍,如果这堆硬币共1元,那么5分硬币有多少个?

8.某班同学参加学校的数学竞赛,试题共50道。评分标准是:答对l题给3分,不答给1分,答错倒扣1分。请你说明:该班同学得分总和一定是偶数。

搜索更多关于: 五年级下数学思维训练教材[1] 的文档
五年级下数学思维训练教材[1].doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c0zsqg0eddh41z4g1ryx4_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top