1-2 什么是测量误差?测量误差有几种表达方式?它们通常应用在什么场合? 测量误差是测得值减去被测值的真值。 测量误差有五种表达方式分别是:
(1)绝对误差:当被测量大小相同时,常用绝对误差来评定准确度。 (2)实际相对误差:相对误差常用来表示和比较测量的准确度。 (3)引用误差:引用误差是仪表中通用的一种误差表示方法。 (4)基本误差
(5)附加误差:基本误差和附加误差常用于仪表和传感器中。
1-6 什么是随机误差?系统误差可以分为哪几类?系统误差有哪些检验方法?如何减小和消除系统误差?
在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差称为系统误差。
系统误差可分为恒值(定值)系统误差和变值系统误差。误差的绝对值和符号已确定的系统误差称为恒值(定值)系统误差;绝对值和符号变化的系统误差称为变值系统误差,变值系统误差又可分为线性系统误差、周期性系统误差和复杂规律系统误差等。 检验方法:实验对比法;残余误差观察法;准则检查法 系统误差的消除:
1. 从产生误差根源上消除系统误差; 2.用修正方法消除系统误差的影响; 3. 在测量系统中采用补偿措施;
4.可用实时反馈修正的办法,来消除复杂的变化系统误差。 1-8什么是粗大误差?如何判断监测数据中存在的粗大误差?
超出在规定条件下的预期的误差成为粗大误差,粗大误差又称为疏忽误差。
判断粗大误差的原则是看测量值是否满足正态分布,要对测量数据进行必要的检验。通常用来判断粗大误差的准则有:3?准则(莱以特准则);肖维勒准则;格拉布斯准则。 2-1什么叫传感器?它由哪几部分组成?他们的作用及相互关系如何?
答:传感器是能感受(或响应)规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常传感器有敏感元件和转换元件组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测
1
量的电信号部份。由于传感器输出信号一般都很微弱,需要有信号调理与转换电路,进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须要有辅助的电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部份。
2-2什么是传感器的静态特性?它有哪些性能指标?分别说明这些性能指标的含义。 传感器的静态特性是指被测量的值处于稳定状态时的输出输入关系。
传感器的静态特性可以用一组性能指标来描述,有灵敏度、迟滞、线性度、重复性和漂移。 ①灵敏度是指传感器输出量增量△y 与引起输出量增量△y的相应输入量增量△x的之比。用S表示灵敏度,即S=△y/△x
②传感器的线性度是指在全量程范围内实际特性曲线与拟合直线之间的最大偏差值?Lmax与满量程输出值YFS之比。线性度也称为非线性误差,用?L表示, 即 ?L???Lmax?100% YFS③迟滞是指传感器在相同的条件下,输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。即传感器在全量程范围内最大的迟滞差值
?Hmax与满量程输出值YFS之比称为迟滞误差,用?H表示,
即: ?H??Hmax?100% YFS④重复性是指传感器在相同的工作条件下,输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。重复性误差属于随机误差,常用标准差?计算,也可用正反行程中最大重复差值?Rmax计算,
?R??即:
(2~3)??100%YFS
?R???Rmax?100%YFS⑤漂移是指输入量不变的情况下,传感器输出量会随着时间变化的现象。最常见的是温度漂移,即周围环境温度变化而引起的输出变化。
3-1什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解释金属电阻应变片和半导体应变片的工作原理。
2
答:在外力作用下,导体或半导体材料产生机械变形,从而引起材料电阻值发生相应变化的现象,称为应变效应。半导体的电阻率随作用应力的变化而发生变化的现象,称为压阻效应。
dR?K*R工作原理:应变效应表达式为ε,式中K为材料的应变灵敏系数,当应变材料为dR金属或合金时,在弹性极限内K为常数。金属电阻应变片的电阻相对变化量R与金属材料
的轴向应变ε成正比,因此,利用电阻应变片,可以将被测物体的应变ε转换成与之成正比关系的电阻相对变化量,这就是金属电阻应变片的工作原理。
dR?压阻效应表达式为RπEε,在外力作用下,被测对象产生应变时,应变片随之发生相
同的变化,同时应变片电阻也发生相应的变化。当测得的应变片电阻值变化量为△R时,便可得到被测对象的应变值,根据应力与应变的关系,得到应力值正比于应变,而试件应变正比于电阻值的变化,所以应力正比于电阻值的变化,这就是利用应变片测量应变的基本原理 4-1说明差动变隙电压传感器的主要组成,工作原理和基本特性 答:主要组成:主要由铁芯,衔铁,线圈三部分组成。
工作原理:传感器由两个完全相同的电压线圈合用一个衔铁和相应磁路。工作时,衔铁与被测件相连,当被测体上下移动时,带动衔铁也以相同的位移上下移动,使两个磁回路中磁阻发生大小相等方向相反的变化。导致一个线圈的电感量增加,另一个线圈的电感量减小,形成差动形式。 输出特性:
???????1???L??L1??L2?2L0?0?????022???????????????...????0??
?L???2L?0
若忽略上式中的高次项,可得0为了使输出特性能得到有效改善,构成差动的两个变隙式电感传感器在结构尺寸、材料、电气参数等方面均应完全一致.
4-3 差动变压器式传感器有几种结构形式?各有什么特点?
答:结构形式:差动变压器式传感器有变气隙式差动变压器式和螺线管式差动变压器式传感器二种结构形式。
3
U0?-特点:变隙式差动变压器传感器的输出特性为
W2UiW1????W1?0W,输出电压与2比值
W1U与?0 W成正比,然而2比值与变压器的体积与零点残余电压有关。应综合考虑;0成反比关系.因此要求
?0越小越好,但较小的?0使测量范围受到约束,通常在0.5mm左右。
螺线管式差动变压器式传感器的输出特性是激励电压U和激磁频率f的函数,理论上,灵敏度K与U、f成正比关系,而实际上由于传感器结构的不对称、铁损、磁漏等因素影响,K与f不成正比关系,一般在400Hz~10KHz范围内K有较大的稳定值,K与U不论在理论上和实际上都保持较好的线性关系。一般差动变压器的功率控制在1瓦左右围为线圈骨架长度
11的10到4因此可以测量大位移围。
4-10何谓涡流效应?怎样利用涡流效应进行位移测量?
答:块状金属导体置于变化着的磁物中,或在磁场中作切割磁力线运动时,导体内将产生呈旋涡状的感应电流,此电流叫电涡流,所产生电涡流的现象称为电涡流效应。
电涡流式传感器的测试系统由电涡流式传感器和被测金属两部分组成。当线圈中通以交变电流?1时,其周围产生交变磁物H1,置于此磁物中的导体将感应出交变电涡流?2,?2又产生新的交变磁物H2,H2的作用将反抗原磁物H1,导致线圈阻抗Z发生变化,Z的变化完全取决于导体中的电涡流效应,而电涡流效应既与导体的电阻率
?,磁导率?,几何尺寸有关,
又与线圈的几何参数、线圈中的激磁电流频率f有关,还与线圈和导体间的距离x有关,因此,可得等效阻抗Z的函数差系式为 Z=F(
?、?、r、f、x)
式中r为线圈与被测体的尺寸因子。 以上分析可知,若保持
?,?,r,f参数不变,而只改变x参数。则Z就仅仅是关于x单值
函数。测量出等效阻抗Z,就可实现对位移量x的测量。
5-1根据工作原理可将电容式传感器分为那几种类型?每种类型各有什么特点?各适用于什么场合?
答:类型:根据电容式传感器的工作原理,电容式传感器有三种基本类型,即变极距(d)型(又称变间隙型)、变面积(A)型和变介电常数(ε)型。
4
相关推荐: