22.1.2二次函数y=ax2的图象和性质教案1
教学目标:
1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。 2、使学生经历、探索二次函数y=ax2图象 性质的过程,培养学生观察、思考、归纳的良好思维习惯 重点难点:
重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。 教学过程: 一、提出问题
1,同学们可以回想一下,一次函数的性质是如何研究的? (先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)
2.我们能否类比研究一次函数性质的方法来研究二次函数的性质呢?如果可以,应先研究什么?
(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)
第 1 页 共 6 页
3.一次函数的图象是什么?二次函数的图象是什么? 二、探索图象
例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表: x … ---0 1 2 3 … 3 y … 9 2 4 1 1 0 1 4 9 … (2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点
(3)连线:用光滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:它有一条对称轴,
第 2 页 共 6 页
且对称轴和图象有一个交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点. 三、做一做
1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别? 2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?
3.将所画的四个函数的图象作比较,你又能发现什么? 对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论、交流,让学生发表不同的意见,达成共识:两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点,教师可引导学生类比1得出。
对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0). 四、归纳、概括
第 3 页 共 6 页
相关推荐: