又MN?1?k2x2?x1=1?21m743
?x1?x2?∴
2?4x1x2?28?142m,∵点A到直线l的9距离
d?,
S?AMN?111421MN?d?28?m2?m 2297?2114421?142?221362??m?28m??314? , 28?m?m??14914214?9?28?9,即m??3时等号成立,
?14?2?????9?23x?3. 3当且仅当m2??此时直线l的方程为y?20.解析:(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点. 又由
1113知,C不经过点P1,所以点P2在C上. ???a2b2a24b2?1?12
???a?4?b2因此?,解得?2.
13??b?1???122?4b?ax2故C的方程为?y2?1.
4
21.(1) x?8y;(2) 证明见解析.
【解析】(Ⅰ) 设C点坐标为?x,y?,则B点坐标为?2?x?,0?. ?2?因为AC是直径,所以BA?BC,或C、B均在坐标原点.
uuuruuuruuur?x?uuur?x?因此BA?BC?0 ,而BA???,2? , BC??,y?,
?2??2?x2?2y?0,即x2?8y, 故有?42?x0?2另一方面,设C?x0,?是曲线x?8y上一点,
8??22?x0?x0?162则有AC?x0??, ?2??88??2x02?2x0?168, ?AC中点纵坐标为
2162故以AC为直径的圆与x 轴相切.
综上可知C点轨迹E的方程为x?8y. (Ⅱ)设直线AC的方程为y?kx?2,
2由{y?kx?22得: x?8kx?16?0
x2?8y设 C?x1,y1?,P?x2,y2?,则有x1x2??16.
x2x由y?对x求导知y??,
84从而曲线E在P处的切线斜率k2?x2, 4直线BC的斜率k1?x128x1?x12?x1, 4于是 k1k2?x1x2?16???1. 1616因此QC?PQ .
所以?PQC恒为直角三角形. 22.(1)y?4x;(2)详见解析.
【解析】(1)依题意得QP?QF,即Q到直线l:x??1的距离与到点F的距离相等, 所以点Q的轨迹是以F为焦点, l为准线的抛物线.
设抛物线方程为y?2px(p?0),则p?2,即点Q的轨迹C的方程是y?4x. (2)
222
由题意可设直线AB:x?my?1?m?0?,代入y?4x,得y?4my?4?0,
222?y12??y2?,y1?,B?,y2?,则y1?y2?4m,y1y2??4; 设A??4??4?又H?1,2?,设直线AH,BH的斜率分别为k1,k2, 则k1?y1?2y2?244?,k??, 222y1y2y1?2y2?2?1?144设M??1,yM?,N??1,yN?, 令x??1,得yM?2?2?y1?2?8, ?y1?2y1?22?y2?2?8同理,得yN?2?, ?y2?2y2?2从而
yMyN?y1y2?2?y1?y2??4?2?y1?2?2?y2?2?4???4??4?2?4m?4???4; ·??y1?2y2?2y1y2?2?y1?y2??4?4?2?4m?4?8??8?yM?yN??2????2??
y?2y?212?????11??4?8???
?y1?2y2?2??4?y1y2?2?y1?y2??48???y1?y2??4??
?4?8?4m?4??4?2?4m?4
??4. m
又以MN为直径的圆的方程为: ?x?1???y?yM??y?yN??0, 即y??yM?yN?y?yM·yN??x?1??0,即x2?2x?3?y2?2224y?0, m令{y?0,解得x??3或x?1,
x2?2x?3?y2?0从而以MN为直径的圆恒过定点??3,0?和?1,0?.
相关推荐: