第一范文网 - 专业文章范例文档资料分享平台

2019年上海市高考数学一轮复习 专题突破训练 函数 理

来源:用户分享 时间:2025/7/30 11:02:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

高考数学精品复习资料

2019.5

上海市高三数学理一轮复习专题突破训练

函数

一、填空题

x﹣1x﹣1

1、(上海高考)方程log2(9﹣5)=log2(3﹣2)+2的解为 2 . 2、(上海高考)设f(x)为f(x)=2为 4 .

3、(上海高考)设f(x)??﹣1

x﹣2

+,x∈[0,2]的反函数,则y=f(x)+f(x)的最大值

﹣1

?x,2x?(??,a),?x,x?[a,??).23?12 若f(2)?4,则a的取值范围为 .

4、(上海高考)若f(x)?x?x,则满足f(x)?0的x的取值范围是 . a2?7,5、(上海高考)设a为实常数,y?f(x)是定义在R上的奇函数,当x?0时,f(x)?9x?x若f(x)?a?1对一切x?0成立,则a的取值范围为________

6、(上海高考)对区间I上有定义的函数g(x),记g(I)?{y|y?g(x),xI?}的函数y?f(x)有反函数y?f?1,已知定义域为[0,3](x),且f?1([0,1))?[1,2),f?1((2,4])?[0,1),若方程

f(x)?x?0有解x0,则x0?_____

7、(静安、青浦、宝山区高三二模)函数y?2x?2x?1的值域为

28、(闵行区高三二模)函数f(x)?logax?a(x?1)?8在区间?0,1?内无零点,则实数a的范围

9、(浦东新区高三二模)若函数f?x??x?x?4的零点m??a,a?1?,a为整数,则所以满足条件

223a的值为 10、(普陀区高三二模)函数f?x??1?x?x?1?,若函数g?x??x2?ax是偶函数, 则f?a??

11、(徐汇、松江、金山区高三二模)设f(x)是定义域为R的奇函数,g(x)是定义域为R的偶函

数,若函数f(x)?g(x)的值域为[1,3),则函数f(x)?g(x)的值域为

12、(长宁、嘉定区高三二模)设定义域为R的函数f(x)???|lgx|,x?0,??x?2x,x?0,2若关于x的函数

y?2f2(x)?2bf(x)?1有8个不同的零点,则实数b的取值范围是____________

?34?8x???213、(奉贤区高三上期末)定义函数f(x)???1f(x)??22区间?1,8?内的所有零点的和为 14、(黄浦区高三上期末)若函数f(x)?2x减区间是

21?x?2,则函数g(x)?xf(x)?6在

x?2?ax?1?3a是定义域为R的偶函数,则函数f(x)的单调递

15、(嘉定区高三上期末)已知4?2,lgx?a,则x?___________ 16、(浦东区高三上期末)已知y?f?1a(x)是函数f(x)?x3?a的反函数,且f?1(2)?1,则实数

a?

17、(普陀区高三上期末)方程lgx?lg(7?x)?1的解集为

18、(上海市八校高三3月联考)若函数f(x)?么实数b的值为

123x?x?的定义域与值域都是[1,b](b?1),那2219、(青浦区高三上期末)已知函数f(x)对任意的x?R满足f(?x)?f(x),且当x≥0时,

f(x)?x2?ax?1.若f(x)有4个零点,则实数a的取值范围是 .

20、(松江区高三上期末)设f(x)是定义在R上的偶函数,对任意x?R,都有f(x?2)?f(x?2),

?1?且当x???2,0?时,f(x)????1.若函数g(x)?f(x)?loga(x?2)(a?1)在区间??2,6?恰

?2?有3个不同的零点,则a的取值范围是 ▲

x二、解答题

2x?a1、(上海高考)设常数a?0,函数f(x)?x.

2?a(1) 若a?4,求函数y?f(x)的反函数y?f?1(x);

(2) 根据a的不同取值,讨论函数y?f(x)的奇偶性,并说明理由.

2、(静安、青浦、宝山区高三二模) 已知函数f(x),g(x)满足关系g(x)?f(x)?f(x??),其中?是常数.

(1)若f(x)?cosx?sinx,且??(2)设f(x)?2x?

3、(浦东新区高三二模)已知函数f(x)?x??2,求g(x)的解析式,并写出g(x)的递增区间;

1,若g(x)的最小值为6,求常数?的值. 2xa,(x?0),a为实数. x (1)当a??1时,判断函数y?f(x)在?1,???上的单调性,并加以证明; (2)根据实数a的不同取值,讨论函数y?f(x)的最小值.

4、(普陀区高三二模)已知函数f(x)?2x的反函数为f?1(x) (1)若f?1(x)?f?1(1?x)?1,求实数x的值;

(2)若关于x的方程f(x)?f(1?x)?m?0在区间?0,2?内有解,求实数m的取值范围;

5、(徐汇、松江、金山区高三二模)已知函数f(x)?(1)求函数h(x)?f?x??2g?x?的零点;

1?1?1?1?g(x)?x?x?,????.

2?x?2?x?(2)若直线l:ax?by?c?0a,b,c为常数与f(x)的图像交于不同的两点A、B,与g(x)的图

像交于不同的两点C、D,求证:AC?BD; (3)求函数F(x)???f?x???

6、(奉贤区高三上期末)判断函数f(x)?lg

7、(虹口区高三上期末)已知函数f(x)和g(x)的图像关于原点对称,且f(x)?x2?x (1)求函数y?g(x)的解析式;

(2)若h(x)?g(x)?m?f(x)?3在??1,1?上是增函数,求实数m的取值范围.

8、(黄浦区高三上期末)已知函数g(x)?10x?1,x?R,函数y?f(x)是函数y?g(x)的反函数.

10?1(1)求函数y?f(x)的解析式,并写出定义域D; (2)(理科)设h(x)?x??2n???g?x???2n?n?N?的最小值.

*1?x的奇偶性. 1?x1?f(x),若函数y?h(x)在区间(0,1)内的图像是不间断的光滑曲线,求证:x函数y?h(x)在区间(?1,0)内必有唯一的零点(假设为t),且?1?t??1.

2

9、(徐汇区高三上期末)已知函数f(x)?2?k?2(k?R). (1)若函数f(x)为奇函数,求k的值;

(2)若函数f(x)在???,2?上为减函数,求k的取值范围.

10、(闸北区高三模)设函数y?f?x?的定义域为D,值域为A,如果存在函数x?g?t?,使得函

x?x

2019年上海市高考数学一轮复习 专题突破训练 函数 理.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c12ujp8l9920fvqu4yw276b8ve00zl600v6g_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top